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ABSTRACT

This report is concerned with the development and presentation of
orthogonal main-effect plans. These plans permit uncorrelated
estimates of all main effccts of both symmetrical and asymmetrical
factorial experiments with a minimum number of trials.

Chapters II and III outline some background material on fitting linear
models and factorial experiments which the user of this report may
find informativ.:. These iv . chapters give a short review of existing
knowledge of factorial experiments and methods of aialysing them,

Chapter IV gives an account of the development of orthogonal main-
effect plans for symmetrical and asymmetrical factorial experiments.
The plans for asymmetrical experiments are based on the proposition
that if the levels of a factor occur with the levels of another factor with
proportional frequencies then the two factors are orthogonal. The
possikilities of blocking these plans, the efficiencies of the estimates,
the randomization procedurc and the method of analysis are discussed.

The report concludes with a catalogue of orthogonal main-effect plans.
This catalogue consists of the treatment combinations of twenty-six basic
plans, involving factors with up to nine levels and with up to eigaty-one
trials, from which all orthogonal mzin~effect plans which can be

constructed with eighty-one or fewer trials may be deduced.
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I. INTRODUCTION

A. Preliminary Remarks

The purpose of this report is to present in as simple form as possible
a catalogue of plans by which the eifects of 2 number of contrellable
variables can be explored.

The general situation is that there are response or resultant variables
or outputs which are thought to depend on controllable variables ov inputs,
as,for instance, the response of a chemical process, which is a resultant
variable, depcnds on temperature of reaction, pressure, type of catalyst
present, flow rate of ingredients and so on. The situation is one of very
general occurrence as may be seen from the following examples from

widely different areas of human investigation.

Situation Respense Inputs
i. Performance of college Number of lectures, method
freshmen students in of presentation, number of
mathematics assignments
2. Performaunce of Types and quatliii~s of foods,
astronauts other possible environment

stimuli, amount of training

3. Conversion of one Temperature, pressurc,
chemical to another feed rates, catalysts,

contact time



Situation

Response

Inputs

:&-

Quality of an electrical

device

Growth of a * slogical

organism

Yield of an agricultural

crop

Psychological status of

sick individuals

Treat.nent of an illness

Degree of delinquency

of humans

Variables in method of
production of device, such
as nature of alloy, of
resistances, rate of cooling

in production of parts
Amounts and types of
various nutrients

Rate of seeding, spacing of
plants, amounts of

fertilizers

Amounts of drugs, amount

and nature of psychoanalysis

Diet factors, drug factors,

amount of rest

Social and economic

measurss

The reason for making a list like the above which could be extended

indefinitely is to show the range of situations which have the samaz

evseiiial struchire.

From the point of view of designing an investigation

in any of these situations the problems are as follows:

{i) Defining in operational terms the resultant or response vzriables

of interest.

In the above examples only one response variable is
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e
~

(iv)

given, but one can easily imagine many others.

Defining the contrcl variables, or inpuis which should be
considerea. For various reasons statisticians referred to these
inputs as fa-tors and this led to *he term factorial experiments,
which are nothin i but experiments designed to investigate

several factors or iuputs.

Defining the variunts of factors to» be considered, as for instance
temperature ai 150°C, ZOGOC. ZSOOC, or catalyst as
manganese or platinum oxide. It is fairly standard to use the
serm ''levels® {or these varian:s. In the case of a factor like
temperaiure which can be envisaged ~5 taking any value in a
varticular range, that is, a continuous factor, the terin "level' is
clearly appropriate. For the case of discrete factor, or one in
which the variants cannot be represented as points on a line, the
term "leveis" is not as app:opriate because one variant cannot be
said to be at a higher level than another. But the use of the term
"levels" {or both cases does not appear to be confusing to

scientists and technologists, and is so well entrenched in

statisticel términ-logy, that it will be followed here.

Specification of the class of situations tc which the inputs are to

be applied and about which conclusions are desired.
Choice of combinations of the inputs to be tested.

Assignment of the individual combinations to the members of the

class of situations.



{vii} Specification of methods of interpreting the resultanc data.

All the above are shorthand statements of problems each of which could
be given extensive consideration. Yome of the problems are strictly in
the province cf the experimenter. The statistician per se does not know
what vield variables are of interest, what possible inputs should be
considered, how the yield variables are to be neeasured, how the inputs
are to be controlled, what levels of the inputs are to be considered, and
what class of situations is of interest to the experimenter. The
s:atistician can sometimes give advice on these matiers, based on

.

repeaiability of ability to control variables, of pre-

oy

ious u
cision and sensitivity of possible choices; variability of members of the
class of situations to be investigated, and precision of measurement of
yield variables. To evaluate whether a statistician can give help on these
matters, he will ask questions of the experimenter pointing out the
consequences of various conditions and choices and may on the basis of
the answers make suggestions or merely content himself with the opinion
that the experimenter has aiready considered these aspects adequately.

It is when we turn to the latter problems of the above list that
particular knovwlecdge of statistical design of experiments comes into play.
One may for instance envisage a situation in which there are say 10 inputs
or factors, each of which could be examined at several levels. The
naive reaction is to say: "Try all possible combinations', but when one
realizes that even if the number of levels chosen for each factor is 3
the total number of possible combinations is 310 or 59,049, one sees

thai thic is completely impossible. Also it may not be necessary. Ta

wa




see this we need to consider further the type of problem being attacked.
That problems can be classified is, we imagine, self-evident, but
possibly one of the real gains from statistical thinking is the existence
of a classification, wliich can of course be only rough.

It will be convenient in what follows to use sometimes the phrase
“factor space'. ‘I'his is a short term for the totality of possible
comkbkinations of the factors or inputs which is considered relevant. If
for instance one wishes to investigate temperature between 150°C and
300°C, pressure between 101lbs/sq.in. and 201bs/sq.in., fiow rate
from 100 gallons per minute to 500 gallons per minute with no
restrictions as to what combinations of temperature, pressure and flow
rate are poassible, the factor space can be represented as a rectangular
parallelepiped in 3 dimensions with perpendicular axes representing the
three factors. The interior of this parallelepiped then contains a
representation of all possible combinations of factors.

Even when the 1 esponse variables or output variables, and the
control or input variables have been defined, problems can be classified

accusding to the end resnult desired;

{A}  The aim may be to determine the combination or combinations of
input variabies which gives maximum response or minimum
response. This is entirely obvious in the case of a chemical
process in industry, or in the training of a skilled operator. For
brevity this problem is referred to as the problem of response
optimization. There may be several response variables which are

to be optimized jointly and one may then get into problems of




linear or non-linear programming as well.

{B) The aim may be to determine which of the possible factors, which
can be imagined as possibly affecting response, do indeed have a
non-trivial effect. If one has a production line involving many
distinct stages which is producing articles which are not acceptable,
one has the problem of determining which of the possible variables,
of which there can easily be 20 or more, are affecting the quality
of the end product. T%is problem will be referred to as the

problem of screening of factors.

{C}) The aim may be to obtain a rough idea of the effects of factors

applied jointly over a range of conditions. This problem has uot

had a particular name associated with it, and for lack of a better
term, we shall call it factorial evaluation, that is, evaluation cf the

role of the possible factors.

(D) The aim may be to obtain a continuous functional relationship of the

response {output) to the factors {inputs) like, for instance,

X
1(:5"}-:;—0-'}'7’—"l
1 2

where y is the response, and Xy, X, are the inputs. This

problem will be referred to as functional evaluation.

It is not our purpose here to discuss all these problems in detail, but
the following remarks indicate to some extent what is involved and what
general plan of investigation should be followed.

In the case of response optimization, ii is not essential to obtain
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much of an idea of what factors are relevant, provided one has included
in onels list all the factors which are controllable. One can merely do
what might be termed local experimentation in the factor space, by
experimenting around a point in the factor space which is thought to be
the best guess of the optimal combinaiion. On the basis of this experi-
mentation one finds the direction in the factor space along which it seems
best to p.: ceed in search of the optimum. The formulation of a strategy
by which to do all this is a difficult problem, but some statisticians have
in recent years put forward some interesting ideas. It is of course
apparent that the more factors considered the greater the complexity of
assessing the experimental results. [f there should be two or more
response criteria, the problem of optimmum seeking becomes much more
complicated. For instance one might wish to determine the combination
of inputs which gives maximum percentage response of a chemical
process subje-t to the restriction that one wishes to attain a purity
greater than a certai, percentage, with as low a use of catalyst as
possible. Some of the problems which occur on first thought may not
even be sufficiently well-defined to enable even the theoretical search for
a solution. They may also depend on obtaining a fairly good idea of the
functional structure of the situation, that is, the mathematical relation-
ships of the responses or outputs to the inputs.

In the case of the experiment for screening factors, the problem is more
one of determining factors which are having appreciable eifects with a view
to more precise experimentation directed to aims (A), (C} or (D). For

instance, suppose that a certain step in a production process consists




of heating the uncompletad product entering that stage in a furnace for
two hours at 150°C. One might ask whether it matters whethcr the
heating is donc 1or « much shorter time like half an hour or a longer
time i:nc - hours. In other words is this a factor which merits some
detailed e>amination 6r can one assume that realistic changes in the
factor level are going to have an inappreciable effect on the resuitant
product. A procedure commonly used for this sort of investigation is to
use the following plan in wi'ch there are 6 factors and L denotes a low

level, H a high level (or in the case of a discrete factor, two interesting

possibilities):
Factor
Trial 1 2 3 4 5 6
H L L L L L L
2 H L L L L L
3 L H L L L L
4 L L H L L L
5 L L L H L L
6 L L L L H L
7 L L L L L H

It is not at all difficult to make a convincing case that this plan is very
aefficient. The problem is to evaluate 6 factors and the later parts of
this technical repcrt exhibit plans which can be shown to have greatest
efficiency and sensitivity in determining whether factors merit further
study. These are the main-effect plans for which a catalogue is given.

The development and cataloging of these plans were the main objectives




of the present research.

When we turn to what we have termed '""factor evaluation', we are
interested in not only what factors have effects of non-trivial importance,
but whether also the effect of one factor depends on the status of other
factors at which this effect is determined. In standa:d statistical jargon
the question is '"What are the effects and interactions of the factors?".
For this sort of task, the gamut of factorial experimentation us developed
over the past 30 years is rel-vant.

Finally when we consider the evaluation of functional relationships we
not only want to know what factors and irteractions are present but we
want to express the relationship in as scientifically mezaningful way as
possible and we have to take account of the units in which factor levels
are measured, and have to search for underlying variables which may be
composites of the variables on which we choose to experiment. For
instance we may experiment on a variable v which is, say, a velocity,
but the way velocity enters into the determination of response is in
terms of (v + b)l',2 .

Tuvre are common elements to all these aims and there are no sharp
divisions among therm. In many cases finding the optimum is the
vitimate aim, but screening of factors and looking for the possible
existence of interactions is undertaken first. Similarly screening of
factors and evaluation of interactions may well precede the search for a
functional relationship. So the approach to a problem of science or

technolugy is a matter of judgment. An aim of the theoretical study of

design of experiments is to construct a rationale to aid the reaching of




such a judgment.

B. General Background ot Material Presented

The aim of the research underlying tris report is to present a
catalogue of plans which will enable the experimenter to screen factors.
The plans enable the estimation of the effects of all the factors included.
Any such estimation is unbiased if there are no interactions. If there are
interacticns estimates obtained by a model assuming absence of inter-
actions will be deviate from their true values by other thar experimental
error. This should not be regarded as a deiiciency of the riza:r because
the essence of research is the obtaining of ideas which are subjected to
confirmation. To demand that an experiment have a completeliy
unambiguous interpretation is realistic only if the experiment will not bke
rcpeated, that is, if it is a terininal one, and such experiments must be
rare. No decisions in research are irreversible, and knowledge
possessed at a particular point of time is at best ar approximation to the
truth and at worst comgletely fallacious. Questinns underlying this state-
ment can easily be formulated, and one may question, for instance, the
riske involved ir any plan of investigation.

In addition to the non-terminal nature of research conclusions, one
n«wst also take into account what might be termed the economy of research.
One can envisage using, at a particular stage of an experimental investi-
gation, a range of plans from the smallest and least-time-consuming plan
which will enable one to get some ideas, to a large expensive plan which
will give clear-cut unambiguous answers. With the former there is the

risk of reaching erroneous conclusions, but the advantage of getting a

1C




rough picture quickly. With the latter the risk of reaching erroneous
conclusions will be low, but the chance of reaching conclusions which are
highly uninteresting may be quite appreciable. Also if the experiment is
to take, say, 3 months to perform, one may well find that the ideas which
led to its being planned have been modified by experience and knowledge
acquired since the planning, so that the "big! experiment only partially
done is clearly inappropriate and misdirected. In the case of technologi-
cal experimnents in industry there is obviously a value to be gained from
approximate conclusions obtained quickly. Even in what might be termed
pure research of no Conceivable economic or sccial value, the researcher
will be concerned about the utilization of his own time and energy. Itis
apparent that one should commit oneself to a large experiment which is
seeking a detailed picture only after one has identified factors or inputs
which are known tc have interesting effects and interactions.

The catalogue is then a catalogue of experimental plans which are
likely to be useful in :xploratory research. The adiective ""exploratory"
here i8 not meant to imply research based on little kr.owledge but research
perhaos in an area which is highly developed, where one wishes to obtain
a quick idca of which factors whould be investigated mcre deeply and
which factors should be ignored. There are of course risks involved in
ignoring a factor or in deciding that variation in levels of that factor is
nut worth including in the investigation. It may be that the factor has an
interesting effect in only a small range, as, for example, a biological
stimulus such as an estr-.gen. For example, it was known for years
that stilbestrol caused some species of animals to have increased
growth rates, buil it was found that with doses which were thought to have

11




any possibie effect the side effects were intolerable. Later it was found
that deses which were small relative to doses previously tried had the
desired effects with none of the undesired ones.

There is some further insurance of uncertain value in the use of these
plans, which arises from the empirical conclusion that there are not
likely to be sizeable interactions if there are no main effects. This does
emphasize that one should, by one way or another, have some check on
the magnitude cf error in "ae situation being examined, because the
determination of whether there are effects of interesting magnitude
depends on two things () whether the actual numerical magnitude is
interesting and (ii) whether the actual magnitude is sizeable, say of the
order of 1—;— or 2 times its standard error.

The catalogue of plans enables an experimenter to discover quickly
what pians are available for his particular situation. He may for instance
wish to look at two factors at five levels, three factors at four levels,
two factors at three levels and one factor at two levels. In the technical
language common to the area of the design of experiments, he is involved
in a 52 x 43 x 32 x 2 factorial situation. To list all possible plans would
be an impossible task and we have confined ourselves to plans which
require no more than 81 observaticns. The plans listed are orthogonal
ones, that is, they enable best unbiused zstimates of effects of ali
factors which are uncorrelated. Even to set out all the possibilities in
this case would be tedious but some condensation of the listing is
accomplished by giving an index with instructions, sc that plans can be

used with minor modifications for other situatior s.

12




One modification of standard plans which is always possible has been
little used in the past. This modification was used in the construction of
the plans and can be used to a wider extent. If we have a situation like a
52 x 43 x 32 x 2 moeuticned above we can use a plan for a 58 experiment
and replace three five-level factors by four-level factors, two five-level

factors by three-level factors, and one five-ievel factor by a two-level

factor. In the last case one would set up the following correspondence:

level of five-":vel factor 0 1 2 3 4

level of two-levelfactor 0 1 1 1 0

Thus levels 0 and 4 of the five-level factor are replaced by the 0
level of the two-level factor and levels 1, 2 and 3 of the five-level
facfor by the 1 level of the two-level factor. If one really wanted to
experim:znt with some six-level factors one could collapse 2 seven-jevel
factor plan. This results in a little loss of statistical efficiency, bu* nst
enough to worry about. At least it seems preferable, to the present
authors, to encounter a small loss in efficiency in order to accommadate
the six-level factor rather than to force the experimecenter to delete one of
the levels he likes or otherwise revamp the situation. Of course there is
no point in introducing levels merely “.r the sake of doing so, and the
more levels that are included for a particular factor, the more trials

a ‘e required.

C. Structure of the Material Presented

The analysis of the orthogonal main-effect plans, i.e. estimation of

parameters, estimation of error, tests of significance, is the standard

13




one based on the raethod of least squares and a brief account of the
features of this method is given in Chapter II.

The basis for most of the plans is the concept of factorial experi-
mentation and the elementary ideas of this topic are presented in Chapter
I1i. The noticns of confounding and fractional replication which are
essential in the logical development are also presented. In order to
present factorial experiments in which the factors have a2 number of
levels equal to the power of a prime number some elementary concepts
of Galois field theory are discussed.

In Chapter IV the origin and structure of the plans given in the
catalogue are presented. The efficiency of the plans is described and
possibilities of blocking are discussed.

The construction of the basic plans presented in the catalogue is
described in Chapter V. Several examples of orthogonal main-effect
plans constructed from the basic plans are given and an index of ..« plan:
which can be obtaired from the catalogue presented. The catalogue of

basic >rthogonal main-effect plans then conclude the report.

D. Notes on Terminology

We give below a short list of terms which occur in the presentation

with some explanation of their meaning.

(i) A Factor designates a particular force which is varied in the
total investigation at the will and under the control of the
experimenter. A factor is also called an input variable or a

controlled variable.

14




{ii)} A Quantitative Factor is one whose values can be arranged in

(iii)

(iv)

(vi)

{vii)

(viii)

order of magnitude. Such values can usually be associated with
points on a numericzl scale, e.g. temperatures or pressuves.
This type of factor is also called a continuous factor in the

literature.

A (Qualitative Factor is one whose values are not usually arranged

in order of magniiude, e.g. type of dosage, batches of material.
Although the values of many qualitative factors can be ordered
according to a particular criterion they cannot usually be

associated with points cn a numerical scale.

Levels are the various values at which a factor is examined, e.g.
the levels of temperature in an investigation may be 0°c, s50° C,

100°¢c and 150°cC.

A Treatment Combination is one of the possible combinations of

levels of all factors under investigation.

An Experimental Unit is that entity on which a treatment is

applied. In experimentation on mice, a single mouse may be the
unit. In agronomic investigations the unit is frequently a plot of
land. In experimentation on a chemical process the unit could be

the system for a prechosen interval of time.

A Trial is the application of one treatment combination on one

experimental unit.

A Response is the result of a trial with regard to a particular

attribute, this result usually being expressed numerically. The

15



(ix)
()
(xi)

(xii)

response may be the yield of a process, the performance of a
machine, the resistance of a material and so on. Usually there

will be several response variables for each trial.
An Experiment is the performance of a planned set of trials.
A Plan is a set of treatrnient combinations.

The Effects of a factor are measures of the changc in response
produced by a change in the level of the factor. When a factor is
examined at two levels only, the effect is the difference between
the averagc response of all trials performed at the first level of
the factor and that of all trials at the scveond level. If there are
more than two levels the differences between average responses
can be expressed in several ways e.g. linear effects, quadratic

effects.

Error is the variabpility of response in a set of repetitions. It
usually consists of components of different origins, e.g. failure
of units to be identical, failure to reproduce treatment combina-

tions exactly, inaccuracies of measurement of responses.

16




II. FITTING LINEAR MODELS OR REGRESSION ANALYSIS

The basis of most parametric analyses of experiments is closely
related to the theory of fitting linear models and is frequently referred
to as multiple regression*. Regression analysis can be defined as the
gstimation or prediction of the value of one variable from the values of
other given variables.

The assumption n regression analysis is that a variable y may be
expressed as a linear function of some known variables TR CTRER xp
{which may be functionally related) with uncorrelated random deviations

. . . . . 2 .
which are distributed around zero with cons.:uut variance ¢ . This

linear function may be expressed as

Vg = plx1+ﬂ2x2+... +(3.pxp+e‘1

whers Xis Xgs cves xp take on a particular known value of each a ,
say, X q» Xjps v xap' Frequently X 1= 1 for all a.

The best linear unbiased estimate of the B!s is obtained by
minimizing the sum of squares of deviations

2
f (ya -lenl - e'qu.Z T -ﬁpxup)

*The term regression was originally introducad to describe, partially,
the relationship of one random variable, the dependent variable, to
aacther random variable, the independent variable. In contexts for which
regression analysis is widely used, the independent variables are not
random variables, so the term is not entirely appropriate.

17




This procedure is known as che methed of least squares. Differentiating
the sum of squares of deviations with respect to each of the $'s in

succession the following equations are obtained:

2 -
‘31Exa1 + BzzquxazT see t ppzxu.lxap =2y, %,

-

[31 Z:\ca.lxa2 + pZExo.Z +... 4 ppruzxap = zynxaz
Zx . x _+B,Ev ,x + +B Exz =Ty x
P1Z%1 ap 2 aq2%%ap 7 p%®%ap T “YaTap

These equations are known as the normal equations. If, as is generally

the case in regression problems, the xi‘s ar. not such that one or more
linear functions of them are zero, then a unique solution of the above set
of p simultaneous equations exists. In order to solve them, first solve

p sets of p equations the first set of which is written as follows. using

S..=S.. as an abbreviation for Zx_.x .
i n a Gl Q)
CIS11 + C2512+ e + Cpslp =1
CISIZ+ CZSZZ+ ees t CpSZp =0
C.5, +4C,8, +...+C S =0
1%1p ~ 27 2p P PP

Denote lne solutions of these equations by Cll’ ClZ’ ey Clp , the
first subscript indicating that this is the solution for the first set of
equations and the second subscript denoting the particular C solution.
Next solve these equations with unity on the right-hand side of the second

equation and zero on the right-hand side of all the other equations, the




solution being denoted by C,;, Cyyy -, CZp' Similarly solve the
equations with unity at the right-hand side of the third equation, the
fourth equation, and so or. to the pth equation, in each case the right-

hand side of all other equations being zero.

The solutions can be arranged ina pxp square as follows:

c,C.,... C__
pi  pPe PP

=3 ~d

This arrangement of the solutions is known as a matrix and is the
inverse of the matrix with Sij in place of Cij . The solutions for

Bis Bys «evs Bp are found to be ﬁi= ?Cij Pj where Pj = J;‘..y'u.x_"j -

It will be noted that the Cij’s are derived entirely from the xijis ;
that is, they are a finction of the structure of the observational setup and
are not related to the y's or to the e?s. The quantities estimating the
B!s are linear functions of the y variables. The expectations of the
[‘;‘s are easily found to be the corresponding pt!s, the variances of Ei to
be Cii 0_2 and the covariance of any two B’s, say Ei and Ej to be

Cij ¢2. An estimate of cr2 is derived from the sum of squares of

Jeviations about the estimated values aud is given by

;Z‘sz-—l-—z( —éx -B,x , - -ﬁx )Z

- 'n—puyq 1%1 “P2%e2 -+ p ap
1 Z ~ s
’Fﬁ(fyu'izﬁipi’
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where ZBiPi is the sum of squares removed by the regression on
Xis Xoy ey xp. The results may be expressed in terms of the analysis

of variance, as shown in Table 1.

TABLE 1
ANALYSIS OF VARIANCE

Source d. f. Sum of Squares Mean Square
: P 5P o= 62
Regiassion D 1E1Bip‘- F.‘.Bil:’i P=s
Remaindex (n-p) Difference Difference/n-p = s2
o2
Total n Zy
a
a=1

In order to test the significance of the regression coefficients
(the B,'s) the randem deviations e ~are agsumed to be normally and
independently distributed about a zero mean with constant variance 0'2 .
With these assumptions the significance of the regression coefficients
can be tested jointly by evaluating the mean squares in the analysis of
variance and comparing the ratio s;' / s2 to the F distribution with p
and (n-p) degrees of freedom.

With the extended assumptions ou the random deviations e, onecan
also construct conifidence intervals for the estimates of each B; - Since

. ol 2z -~ &

the estimated variance of B, is C;® then (ﬁi - ﬁ)/ 8 fé; is

distributed as Student's t distribution with (n-p) degrees of freedom.
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A
Hence the 95% confidence intervals on ;’%i are given hy
Byt , 959 SYCy -

Suppose we rename the regression coefficients {31, ;32, ey pq,
A w i 1
pqﬂ, ceey ﬁp and we wish to test whether ﬁq+1’ ﬁq+2, ceey ﬁp could be
zero making no assumptions about the remaining coeificients.

The procedure is as follows:

(i) Estimate the regression coefficients in the model

ya:ﬁ1x1+ﬁzx2+... +ppxp+e

-

- o~
obtainin, s Bos ceuy . The sum of squares removed by the
8 P P2 p

. . P -
the regression on Xir Koy eees xP is equal to 51 pi Pi‘

(ii) Estimate the regression coefficients in the model

yazplxli-ﬂzxzi-... +{3qxq+e

obtaining ﬁ’f, BE s seey ﬂ; « The sum of squares removed by the

regression on Xps Koy eeey xq is equal to g ﬁ?Pi'

i=1

(iii) Construct the analysis of variance given in Table 2.
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TABLE 2
ANALYSIS OF VARIANCE

Source d.f. Sum of Squares Mean Square
Regression on xX,,...,X q Z pFP s2
1, ? q i___l i i q
Regression on x . X
e ol P P . q 2
itti - - %
after fitting Hyseoes xq P-q iflﬂi P1 Elpi P 83
P . 2
Regression on Kyseoo ,xp P ifl ﬁi P1 sp
Remainder n-p Difference 32
a 2
Total n Zy
a=1 2
To test the hypothesis that ﬂq-’-l’ ceey Bp are zero we utilize the

fact that under the hypothesis that they are zero the ratio sﬁ/ sZ will be
distributed as F with (p-q) and (n-p) degrees of freedom and thus
compare 5(21/ sz' with the value in the F table corresponding to (p-q)
and {n-p) degrees of freedom.

ihe usual regression test devised to test whether deviations about
the mean have a regression on the indepcndent x variates may be

deduced from the above discussion. The complete hypothesis is that

yc=ﬁlx1+pzx2+ +ppxp+ €.
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and the restricted hypothesis that

Ya © pl *a1 te
where x , is unity for all values of a. The estimate P} is y and the
sum of squares due to the regression on %, {i. e. the sum of squares
due to the mean) is yZy. The "correction for the mean" y Ty, with

one degree of freedom may be decducted from the total sum of squares

and the analysis is given in Table 3.

TABLE 3
ANALYSIS OF VARIANCE

Source d.f. Suam of Squares Mean Square
. 1 p ~ ?
Regression on HKosees ,:«:p p- ifzﬁi Pic s.
Remainder n-p Difference sZ
n o, _n
Total n-1 Zy -~y y
a=1 ¢ a=1 ¢
P. =P, -x,_ Zy_ denotes the sum of products around the mean.
ic i i1 " ’a

Much of the preceeding discussion can be simplified through the use
of matvix notation. The linear functiocn expressing y as a function of

the x variates may be written as

vy=Xpfte




Y1 X11*¥32 0 *1p Py €
Y2 B2
vyl vyl X = % 1%.2° " xap , B = . and e= e,
v X X 5000 X B €
n | nl "n2 np | P n
L L 3 |

The sum oi squarer to be minimized is
e'e = {y - X} (y - Xp) = y'y - 2p"X'y + B*X'Xp.

The normal equations are

-

SB = X'y

where S = X'X.
If S is non-singular then 5 = S.1 X'y and the variance-covariance
mairix of the estimates is equal to chS-1 . The estimate of ot is
given by

a® = (y - XP)'(y - XP)/(a-p) = {y'y - B*X'y}/(a-p).

The resuits presented above will be utilized in the chapters which
follow and matrix notation will be used whenever it simplifies the
presentation.

There arises the problem of how should 6‘2 be estimated if n=p
{(i. e. the number of parameters to be estimated equals the number of
trials). The estimate of 0_2 based upon the sum of squares of
deviations about the estimated values of the parameters is sometimes
called pure error. If n = p it is clear from the formula for ;2 that no

estimate of pure error can be derived from the experiment. In such a
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situation there arc two possible ways of resolving the problem. First,
the experimentcr may be investigating a process for which the experi-
mental error is slready known. In this case the error c¢btained from
prior inforrnation may be used as an estimate of o-a. This estiinate of
S_Z can then be based on infinite degrees of freedomn and the estimation
and test of significance procedure can bc made as if the estimate of
experimental error had been obtained from the experiment itself.

A graphical procedurc fo. analysing factorial experiments developed
*y Daniel (1959) may be useful in cobtaining a rough estimate of error.
This procedure uses a half-normal grid on which to plot the absolute
values of the contra.ts defining the ma:a effects and interactions of a
factorial ¢uperiment. If these contrasis are arranged in order of
absolute magnitude and plotted on half-novrnal probability paper they should
fall along a straight line, if all factors have no effects.

A half-normal grid can be prepared by taking a sheet of arithmetic
{normalj probability paper, deleting the printed probability scale P, for
the range P < 50% and replacing each value of P >50% by the corre-

sponding value of P'= ZP - 100. The relaticn
Pr=(i-3)/N;i=1, 2, ..., N,

where N is the number of main effects and interscrtions to be estimated,
is used for plotting the empirical distribution ot cordirasts. The abscissae
are the absolute values of the contrasts.

Under the null hypothesis that all factors have no efizcts the standard
error of each contrazt L could be roughly estimated by ihe contrast for

which P! is most nearly 0.683. If it is known that some effects or
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interactions are likely to be reai and it appears from the graph that they
are, then they should be judged real and the remaining contrasts used to
determine the standard error i.e. reduce N by the number of real
effects and/or interactions in the formula P?= (i - }2-)/N and then
estimate the standard error of a contrast by the absolute value of the
comtrast for which the new P! is most nearly 0.683. If a straight line
is drawn through the origin and the absolute value of the contrast for
which P? is most nearly u.683 a rough idea of which effects and
interactions are significantly large can be obtained. These will fall far
to the right of the line. An estimate of the experimental error, o-z, can

be obtained from the formula

-~ ~
o = TPAN+Y).

The estimate of experimental error is based upon N degrees of {_eedom
and although it is approximate and deduced by subjective reasoning, it
does give some infc rmation about the experiment that would not be
forthcoming without an estimate of error. The reader who is interested in
this technique can find many illustrative examples of its use in the paper

by Daniel {1959).
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III. FACTORIAL EXPERIMENTS

When an experiment involves several factors, the effects of all
factors on a characteristic of interest may be investigated simultaneously
by varying each factor so that all or a suitable subset of all possible
~ombinations of the factors are considered. An experiment in which this

procedure is used is known as a factorial experiment.

A. Factorial Experiments with Factors at Two Levels

The simplest and most common factorial experiments involve factors
which occur at two levels. The two levels of a factor, may be denoted by
0 and 1. A treatment is denoted by a particular combination of levels,
oue level from each factor. The treatment combination for which all the
iactors occur at the 0 level can be simply denoted by {1). The 1 level
of a factor, say factor A, can also be represented by the lower case
letter a. A factorial experiment involving three factors A, B and C
each at two levels would consist of the following treatment combinations:
(1), a, b, ab, ¢, ac, bc and abe. In these combinations the presence of
a letter indicates that the corresponding factor occurs at its 1 level and
the absence of a ietter indicates the corresponding factor occurs at its 0
level.

The rmain effect of factor A is defined to be the cifference between
the mean of the yields at the 1 level of factor A and the mean of the
yields at the 0 level of facter Al
Hence the main effect of A is %(a +abiac+abc) - 71}-( {1})+b+c+bc)

which can zlso be written as
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A = % (a-1)(br1)ct])

where the expression is to be expanded algebraically and the responses
substituted for the treatment symbols. ‘I'he effects and interactions of

the 23 factorial experiment are given by

A = pla-1)(bH1)et)
B = 3 (a+1)(b-1)(ct])
AB = 1 (a-1)(b-1)c+1)
C = z{atl)(bri)c-1)
AC = 7 (a-1)bH1)(e-1)
BC = g (at1)(b-1){c-1)
ABC = 3 (a-1)(b-1){c-1)

a minus sign appearing in any factor on the right if the letter is present
on the left. We will adhere to the convention that treatment combinations
are represented by lower-case letters and 2ffects and interactions by
capitals.

It will be noted that the effects and interactions are seven mutually

orthogonal contrasts of the responses of the eight treatment combinations.
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(n 2 b ab c ac bec abe
4 A - + - + - + - -
4 B - - + + - - + +
4 AB + - - + + - - T+
4 C - - - - + + + +
4 AC + - + - - + - +
4 2C + + - - - - + +
4ABC - + -+ - - s

Orthogonality of two linear contrasts may be defined as follows:
Consider two linear functiczs, 1 and C'Z’ of the variates

Xps Koy eeey X where the x!s have the same variance and are

uncorrelated.
Cl= n1x1+azx2+...+unxn
szﬂlx1+ﬁzx2+...+6nxn

where a, and pi may assume any values, not all zero. A necessary

and sufficient condition that the two linear fu::ctions be orthogonal is

If the mean response of the eight treatment combinations is denoted

by p the effects and interactions are represented by

29
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fe w171 11 1 1 o1 1 1 ]
4 A1 1 -1 1 -1 1 -1 1 a
4 8| |-1 -1 1 1 -1 -1 1 1 b
4 ABi=| i -i - 1 1 -1 -1 1 ab
a ¢ | |-i -1 -1 -t 1 1 1 1 c
aac| |1 -1 1111 oa1 ac
apcfl1 1 -1 a1t -1 a1 1 1 be
| 4ABC) _—l i1 1 -1 1 -1 -1 1 i L.abc-

With u factors A, B, C, D, etc. the cifzcts and interactions may be

represented by

1

X = Zn-l

(a+ )b+ Ic+Td+1)...

where the sign in each bracket is positive if the corresponding capiial
letter is not contained in X and negative if it is contained in X, aand the
whole expression or the right-hand side is to be expanded algebraically
and the yields substituted in place of the corresponding treatment
combinations.

The choice of the divisor in the above expression is a matter of
convention only and depends upon the definition of an effect or interaction.
Here we have defined an effect or interaction on the basis of the difference
setween two experimesival uniis.

The response of a treatment combination may be written as
a, bj Cy ++- Wwhere absence is denoted by the subscript taking the value
zero and presence by the subscript taking the value unity. Then

_ 1 1 1 1 1
aibjck... —p.i-z—Ai-z-Bi'zABiiC:'?:ACi...
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where the sign on -l—A is - if i=0 and + if i=1
on B is - if =0 and + if j=1
on 2C s - if k=0 and + if k=1

and so on,

and the sign on a term involving several letters is the produci of the
signs on the individual letters.

ifa 2" experiment is replicated r times in randomized blocks of

: Lo . -1
2" plots each effect or interaction is estimated by the mean of r 2?

. n-1
responses minus the mean of r2 responser and therefore has a

2 -
variance of ( 1 + 1 I) o~2 =¢° [r2" 2, Furthermore the

r Zn_l e 2P

estimates of effects and interactions are uncorrelated so that the

variance of any linear function of them can be easily obtained.

B. Factorial Experiments with Factors at More than Two Levels

The 3" system

With factors at three levels the effect of any one factor may be
expressed in several ways. TFirst the response at each level, where the
level is represented by 0, 1 or 2, can be expressed as a deviation from
the mean response at the three levels, giving say Ay AI and AZ where
A‘O + A1 + A.z = 0. Another approach is that the main effect of a factor
can be represented by independent comparisons among the means corre-
sponding to the different levels qf the factors. Among three independent
quantities there are two independent comparisons. The comparisons

which are of interest will depend upon the nature of the factors, ir
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particular whether they are qualitative or quantitative.

If the levels are qualitative ard the 9 level denotes the control and
the other two denote treatments the comparisons of interest may be
{i) 2 comparison of the two treatments and (ii) a comparison of the
average of the two treatments with the control. These comparisons can

be expressed as

Al -a

#

1
z(22p - 25 - 2;5)

Al = a; -a,

respectively, where ags ay and a, denote the responses with factor
A atthe 0, 1 and - levels.

For most quantitative factors the ccmparisons of interest will be
those giving the most information on the relation between the respounses
and the levels, namely the slope and the curvature. This can be

0 1
denotes the levels of the factor and y is the response variable., The

reprecccented by a polynomial expression y=a, ta, x+ azxz, where x

linear and quadratic effects of factor A may be written as:

AL = (az - ao)

AQ = (a2-2a1+ao) .

The quadratic effect is the linear contrast among ag, a; and a, which
is orthogonal to the lirear effect.

Now consider two quantitative factors A and B, each at three
equally spaced leveis. The interaction of these two factors will be the

interaction of a 3x3 table and will have four degrees of freedom.

L.
re




These four degrees of freedom may be separated into orthogonal
contrasts each with 2 single degree of freedom.

ApLBp = (a2, - 25)b; - by)

‘\‘QBL S (az - 2a; + ao)(b2 - by)
ALBQ = (a2 - ao)(b2 - 2b1 + bO)
AQ BQ = (aZ - 2a, + ao)(b2 - Zb1 + bo)

This systemn of expressing .ne results may be extended indefinitely.
Several conventions have been used to define the main effects and
interactions, each convention having some merit. One common

convention adopted is to deiine the effects and interactions on the basis of

the difference between two experimental units. Adopting this convention
the main effects and interactions of an experiment on two three-level

tactors A and B, are given by

- A, = 3(ay-aghby+ by + by
Ay = £(ag - 22, +a,)(by + by + by)
BL = %(a0 ta ¢ az)(b2 - bo)
B, = glag+a, +aby - 2b, + b))
ALBy = g(a, - 2g)b, - B)
AL Bg = gia, - agby - 2b) +by)
AyB, = Tlag - 2a; +a,)(b, - by)
AgB, = g (ag = 2a; +a )by - 2b, + by)

The convention adupted does not alter any tests of significanc«
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performed on the paramcters and therefore need be of little concern to
the experimenter.

There is a class of experiments involving quantitative and qualitative
factors in which the treatment combinations have an appearance of
consisting of a full set of factorial combinations but are not in fact so.

A simple example of this type is that in which there are three eoually
spaced amounts, including a zero amount of a particular treatment
administered by three mel..ods. Since the zero amounts of the treatment
administered by the three methods are identical treatments there are only
seven different treatment combinations and not nine. The experimenter
must consider whether he should use the nine treatment combinations as
though they were all distinct or only the seweon distinet combinations, and
further he should consider the method of analysis in each case. For a
more detailed discussion of this type of experiment the reader is

referred to section 18. 8 of Kempthorne (1952).

We now present a formal method of defining effects and interactions.
Consider the case of three factors A, B and C each at two levels 0
and i. The eight treatment combinations (1), a, b, ab, ¢, ac, be, abc
may be representec by the points (0,0,0), {1,0,0), {0,1,0), {1,1,0),
(9,9, 1), {1,0..,, (0,1,1) and (1,1,1) respectively, in Euclidean
space with axes x,, X, and Xa, the first coordinate referring to the
level of factor A, the second to the level of factor B and the third to the
level of factor C. The effects and interactions defined previously have a
simple algebraic interpretation. The effect of A is the comparison of the
treatment combinations for which %y = 0 with those for which x, = 1.

1
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Likewise the effect of B is the comparison of the treatment combinatio=s
for which X, = 0 with those for which X, = 1 and the effect of C is the
comparison ot the treatment combinations for which xg = ¢ with those
for which Xy = i. The interaction AB, for example, is in the former

notation the compariscn among treatment combinations,
{1}y +c+ 2:b+abc-a-b-ac-bc

i.e. of the points (0,0,0), (0,0,1), (1,1,0) and (1,1,1) versus the
points {1,0,0}, (0,1,0), (1,0,1}) and (0,1,1) For the points (0,0,0)
and (0,0,1), Xyt %, = 0 and for the points (1,1,0) and (1,1,1),

X, tx, = 2 and for the other four points, Xyt 2, = 1. If the numbers
are reduced modulo 2, that is, any number is replaced by the remainder
when it is divided by 2, the interaction is the comparison of those

treatment combinations for which x; + x, = 0 {(mod 2) versus thos- for

2

which x. + x, = 1 (mod 2). It is easily verified that the effects and

1
interactions are bas .d on a comparison of two groups of treatment

combinations given by the equations in Table 4.
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TABLE 4

ECUATIONS REPRESENTING EFFECTS AND INTERACTIONS

Effect ox Left-Hand Side
Interaction of Equation
*1
B X,
AP Xy *+x,
C X3
AC x4 + X3
BC xy 4 X,
ABC xy Xy X,

For example the treatment combinations entering ABC with a miinus

sign are (1), ab, ac and bc and for these x, + x = 0 (mod 2) and

21 %3

the treatment combinations entering with a plus sign are a, b, ¢, and

1

abe for which x. + X, + x

. = 1 (mod 2).

3
The above approach for the 2" system suggests the appropriate
approach for the 3" system. Consider the arrangement of the nine

treatment combinations with two factors each at three levels.

Lievel of factor A x

I |
(0,0) (1,0) (2,0)
Level of i o
fat?tzroB (0,1) (1,1) {2, 1)
(0,2) (1,2) (2, 2)

v
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The main effect of factor A can be represented by the comparisons
among three means: those for which Xy = 0, for which x, =1 and for
which x = 2. A representation oi these effects as two linezrly
independent numbers may be obtained by considering each mean as a
deviaticn from the over-all mean. The interaction of factors A and B
has four degrees of freedom. These four degrees of freedom can be

considered from the point of view of the completely orthogrnalized 3x>

square:

a B b4

B. C A
Y a B

) c A B
N B Y o

The comparisons among the columns give the effect of factor A, and
among the rows the effect of factor B. Those among the Latin lettzrs
and those among the Greek letters each with two degrees of freedom
represent the four ¢ :grees of freedom for the interaction of the two
factors. Consider the following grouping given by the Latin letters:
(0,0Y. (2,1), (1,2) versus (1,0), (0, 1), (2,2} versus (2,0), (2,2}, {i, i}
For this grouping the comparisons are among those treatment combinations
for which Xt x,= 0, = 1, = 2 {mod 3). Similarly the comparisons among
the Greek letters are comparissns among the treatment combinations for
which *; * sz =0, =1, = 2 (mod 3).

The pair of degrees of freedom corresponding to the equations
xptx, = 0, =1, = 2 mav be denoted by the symboi AB and the pair
corresponding to X ¥ sz =0, =1, =2 by ABZ. The interaction degrees
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of freedom may also be represented by BA and BA2 respectively.

It is easily verified that the comparisons among the groups of treatment
combinations represented by BA and BA2 are the same as those
represented by AB and AB2 respectively. It is necessary, in order
to obtain a2 complete and unique enumeration of the pairs of degrees of
ireedom, to adopt the rule that an order of the letters is to be chosen in
advance and ihat the power of the first letter in a symbol must be unity.
If the power of the first le’.er of 2 symbol is 2 then by squaring the
symbgcl and using the rule that any letter cubed is to be replaced by unity
the power of the first letter will be unity. This process may be extended
indefinitely. For three factors the results are shown in Table 5.

The extensions are quite straightforward and need nct be enumerated.
For the 3" system there are n indepeident factors and their generalized
interactions, giving rise to (3n -1}/2 symbols each representing two
degrees of freedom,

The symbols used above to denote pairs of degrees of freedom can
also be used to denote the magnitudes of effects and interactions. Each
symbol represents a comparison among three groups of Z*}n"1 treatment

combinations, examples of which are:
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TABLE 5

EQUATIONS REPRESENTING EFFECTE AND INTERACTICNS

Effect or Left-Hand Side
Interaction of Equation
A xy
B x,
AB x4 + %,
ABZ Xy + sz
C )
AC xy + xq
Ac? X, + 2%,
BC X, + Xq
B(.':2 x, + 2x3
ABC 11Xt %,
AB(.'Z2 x + x, + Zx3
ABZC x + sz + xg
ABZC2 X+ sz + 2x3

>
n

(mean of treatment combinations for which Xq = 0 {mod 3} )

0
- {mean of all treatment combinations)
AB, = {mean of treatment combinations for which X +x,=0
(mod 3) ) - (mean of all treatment combinations)
AB% = (mean of treatment combinations for which X, + sz =1

{mod 3} } - (mean of all treatment combinations)
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AE»2 C. = {mean of treatment combinations for which Xt 2x2+x3 = 2
[

{mod 3) } - {mean of all treatme nt combinations).

With these definitions the response of treatment combination

a, bj N in terms of effects and interactions is

2 2
= RS . I
agbiey =t A+ B+ AB L+ ABL 4 Cy + AC,, + AC[ , + BC;

2 2
ijak T ABCi g * ABTC, o

o

+k

2 2
*ABCy ook

where all subscripts are reduced modulo 3 and p is the mean of all
combinations. For example, the response of treatment combination
ay by c, isgiven by

2 2

2, .
ajbyc,= p+ A +By+AB, + AB] +C, + AC, + AC; + BC, + B

v

+ ABCO + ABC% + ABZCO + ABZC

Thus it is possible to express any lirear contrast of the responses in
terms of the effects and interactions.

Now suppose that the treatment combinations are tested the same
nurnber of times in a randomized block trial. Then, with an additive
model, the observed response will be equal to a true response plus an
error. The errors may be regarded as uncorrelated with mean zero and
constant variance 0'2 . Then the best estimate of any contrast of the
true responses is the same contrast of the observed means.

The only estimable functions of the parameters are functions of the
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type a, - aj where a is cne of the set of symbols A, B, AB, ABZ,
ABC etc. and the i,j have values equal to 0, 1 or 2. It is easily
verified that the estimates of quantities a, - aj and pm - Bn, where
a,B are different ones of the set of symbols are uncorrelated.

Consider the nine treatment combinations of the 32 factorial

experiment written in terms of effects and interactions,

agby = #+Ayt R, +ABy+ABS
agb; = ptAy+B, +AB +ABS
agb, = ptAg+B,+AB, +AB>
a by = w+Ay+By+AB, +AB’
a b, = ptA +B +AB,+AB]
a;b, = u+A +B,+AB+AB>
a,b, = u+A,+By+AB,+ AB
a,b, = p+A,+B +AB)+ABS
a,b, = w+A,+B,+AB, +AB

The estimate of A2 - AO’ say, is clearly equal to a constant tiines

(a2b0+a by +ta,b,-a;by-a;b, -asb

2 2 0 01 2)

and the estimate of B2 - B1 is equal to a constant times
(agby+ta;by+a,b,-a;b, -a; b, -azbl)
The coefficients of the treatments for the above two contrasts are,

apart from the constant multipiier
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aob0 aob1 aob2 albO alb1 41b2 axzb0 azbl aZbZ
AZ-AO -1 -1 -1 o] 0 0 1 1 1
BZ—B1 0 -1 i 0 -1 1 0 -1 1

Since the sum of the products of corresponding coefficients is zero
the two contrasts are orthogonal.

Among the three deviations from the overall mean Ay AI and AZ’
say, there are two independent contrasts. These can be represented by
the contrasts AZ - A, and AZ - ZA1 + AO. If the same types of
contrasts are utilized for each of the other symbols, it is possible to
obtain eight orthogonal contrasts.

Since in each of the two systems of defining effects and interactions
the treatment combinations can be written in terms of the effects and
interactions it is not difficult to determine the relationship of one ystem
to another, For example, in the 32 experiment on factors A and B

O+a2b1+a2b2-aobo-aob b

Ay =2, b 1720,

+a b b b

L
and AZ-A = azb 1~ 200b2

0 b1+ab

0" 22 27273 % "3

Thus AL = A2 - Ao. Similarly, it can be shown that AQ=A0

2" 23 bO‘ If these four treatment

- ZA1+A2.
Now, ALBL =a, b2 + a b0 - a,

combinations are substituted in the equation

b

2

a;b; = p+ A + B +AB  +AB .

it is casily demonstrated that

_ 2 2 2
A; B = ABj+AB, - 2AB, + 2AB( + AB] - AB}
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. n
fhe p system

The following presentation is a straightforward generalization of the
2" and 3" systems. The generalization from the 3" system to the
pn system, where p is a prime number, can be seen fairly easily,
without introducing proofs. The proofs are bascd on the properties of
Galois fields which will be given later.

Represent the treatment combination by numbers Xy Yo X
where X, is the level ur the ith factor in the particular combination.
The numbers x take on valucs from 0 to (p-1}. All the numbers arc
reduced modulo p, that is, a number greater than (p-1) is replaced by
the remainder after division by p. The (pn-l) degrees of freedom
among the pn treatment combinations may be partitioned into
(pn—l)/(p—l) sets of (p-1) degrees of freedom. Each set of (p-1)

n-1

degrees of frcecdom is given by the contrasts among the p sets of

treatment combinations specified by the following p equations:

a1x1+adle...+unxn=0
n1x1+a2x2+...+anxn= 1

(mod p)
a1x1+02x2+...+unxn=,(p-l)

The o.i's must be positive irtegers between 0 and (p-1), not all
enual to zero and for uniqueness the coefficient of the first a, that is
not zero equals unity.

Two sets of (p-1) degrees of freedom resulting from equations with
left-hand sides Za, = and Zﬁi x; will be orthogonal unless ﬁi = kai

for each i. This can easily be seen because the two cguations,
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(mod p)

will be satisfied by pn-2 treatment combinations, if ﬁi is not equal to
a constant multiplier of a; .
a; 6, o
The symbol A "B " ... K =, which corresponds to the equations
whose left-hand side is
(11 x1 +o.2x2+... +a.nxn,
denotes a set of (p-!) degrees of {recdom, the power of the first letter

occurring being restricted to be unity.

Galois field theory

Tn order to obtain a procedure ior investigating factors, each having
s levels, where s - pm , a knowledge of group theory is essential.

A set of s elements Ugy gy eoy Uy is said to be a finiite field of
order s if the following properties hold:

(i) The set is closed under addition and multiplication, i.e. if u,

and uj belong to the set ther so do u, + uj and u, uj .

(ii) Addition and multiplication are commutative, i.e.
ui+uj:uj+ui and uiuj=ujui.
{iii} Addition and multiplication are associative, i.e.
u, + (uj tu )= (ui + uj) +y  and (u uj)“k = (\:1j uk)
{iv) The distributive law holds, i.e.

as v w) = ouou 4oy,
ux(aj ", Loty u
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(v} There exists an identity element Uy, under addition, i.e.

u, +u, = u, for any j.
0 j j Yy

{vi) There exists an identity element Up under multiplication,i. e.

u, u, = u, forany j.
1Y j y 1

{vii) For each element u, there exists a unique inverse with respect
tc addition,i. e.
4, +u., = u,.
i* Yt 0
(viii) For each element u, {# uo) there exists a unique inverse with
respect to multiplication,i. e.

u. u,

= u,.
- i it 1

The finite field of p elements, where p is a prime number may be
represented by ug = 0, u, = 1, v, = 2... 1 1= p-1, in which addition
and multiplication are the ordinary arithmetic operations with the rule
that the numbers are to be reduced modulo p.

In general, a Galois field of pm elements is obtained as follows:
Let P(x) be a given polynomial in x of degree m with integral
coefficients; and let F({x) be any polynomial in x with integral

coefficients. Then F(x) may be expressed as

F(x) = f{x) + p.q{x) + P(x) Q(x)

here q{x) and Q(x) may be any polynomial in x with integral
coefficients and
2 m-1

f(x)=30+a.1x+a2x tooota x

and the coefficients ags gy -ves B belong to the set 0, 1,2,...,p-1.

This relationship may be written as
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F(x} = {(x) mod p, P(x)

and f(x) is said to be the residue of F(x} modulis p and P(x). It p
and P(x) are kept fixed then the f(x)'s form pm classes of functions.
It may be readily verified that when p is a prime number and P(x} is

irreducible modulo p, that is, P{x) csnnot be expressed in the form
Px) = Pl(x) Pz(x) +p. P3(x)

then the classes defi~ed by the f(x)!s make up a field.

The finite field formed by the pm classes of residues is called 2
Galois field of order pm and is denoted by GF(pm). The p classes
are the same, regardless of the choice of P{x), subject to the
restrictions imposed above, and the ficld GF(pm), always exists if p
is a prime and m a positive integer. The classes of residues can be
represented by the different possible functions f{(x) and may also be

m

denotcd by Ugs Uyy Usy ey where s=p .

u
s-1
To illustrate, we shall obtain the Galois field of 3‘)' elements. An
irreducible polyno.nial modulo 3 is P(x) =1+ xZ . Now coasider the
possible functions f(x). These are of the form agta;x where a, and
a, are elements of the set 0, 1 and 2. Hence the elements of the field
are: u0=0, uy = 1, u, = 2, Uy =X u, = 2x, ug = 1+ x, ug = 1+ 2x,
u, = 2+ x, ug = 2+ 2x. There is a further theorem that all the elements
or marks of the field except the zero element u, can be represented as

the pcwers of 2n element known as a primitive mark. It is readily

verified that y = 1 + x is a primitive mark. For
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y = 1+x

2 e 2

y = 1+2x+x“=2x (since P(x)=1+x°=0)
v> = 2x+2xt=2x+1+2(14%x%)=142x

y4 = 4x2=x2=2'r1+xz=2

y5 =2+ 2x

y{) = 2+2"+2x+2"2:4x+2(1+x2)=4x=x
)'7 = x+x2=x+2+(1+x2)=2+x

y8 = 4=1

Both the representations of the elements of the field are important in
that the representation in terms of x is used for addition and the
representation in terms of y for multiplication.

An irreducible polynomial P(x), a primitive mark and the addition
and multiplication tabies for GF(ZZ), GF(23) and GF(32) are now

presented.
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TABLE 6

THE GALOIS FIELD, GF(2°)

Px)=1+x+ x2 , Primitive mark = x.

Addition Multiplication
o 1t 2 3 0 1 2 3
2 1 2 32 0 0 0 0 o0
o - 2 1 1 2 3
0 1 2 3 1
0 3 2
TABLE 7

THE GALOIS FIELD, GF(2°)

P{x)=1+ x% ¢ x> s Primitive mark = x

Addition Multiplication
2 3 4 5 6 7 01 2 3 4 5 6 17
2 3 4 5 f: 1 0 2 0 ¢ 0 0 0 O O©
2 5 4 7 6 1 1 2 3 4 5 6 7
1 6 7 4 5 2 4 6 5 7T 1 3
0 7 6 5 4 3 5 1 2 7 4
0 1 2 3 4 7 3 2 6
e 3 2 5 6 4 1
o 1 6 3 5
0 7 2

4R




TABLE 8
THE GALOIS FIELD, GF(3%)

P(x)=1+ x2 s Primitive mark=1+x

Addition Multiplication

01 2 3 4 5 6 17 8 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 171 8 0 0 0 06 0 0 0 0 0 O
1 2 0 4 5 3 7 8 6 1 1 2 3 4 5 6 7 8
2 1 5 3 4 8 6 1 2 1 6 8 7 3 5 4
3 6 7.8 0 1 2 3 2 5 8 1 4 1
4 8 6 1 2 0 = 6 1. 7 2 3
3 7 2 0 1 5 3 4 6 2
6 3 4 5 6 2 8 5
7 5 3 1 3 1
8 4 8 6

The use of these fields in examining the s™ = (pm )n factorial system

is evactly analogous to the use of 0, 1, 2, ..., p-1 for the pn factorial

)

system. The treatment combinations may be denoted by (xl, Xoyeeos X
where each %, can take one of the values 0, 1, 2, ..., s~-1. The
(s"-1)/(s-1) sets of (s-1) degrees of freedom, which can be obtained by
partitioning the (sn-l) degrees of freedom into main effects and
interactions, are orthogonal, and the responses may be expressed in
terms of the mean, effects and interactions. The only complication is

that the numbers used are marks of the Galois field, addition and

multiplication being defined within the field.
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C. Confounding in Factorial Experiments

The pericrmance of a comparative experiment requires definition of
experimental units and the precision of conclusions depends on the
variation among Lthe units, in addition to other things. The greater the
variation among units the higher the error and the lower the precision.
To combat this, it is advantageous to group the units into what are
usuaily called blocks of units and {o design the experiment so that only the
variation among units within blocks enters the standard error of
estimates. The smalier the block size the more uniform the units in the

. block will tend to be. It is therefore desirable 10 have some meaas of
reducing the size of the block, i.e. the number of units in each block,
and thus increase precision. For this purpose the device of confounding
has been found very useful.

Consider a simple situation of three factors, A, B and C each at
two levels, the eff cts and interactions being defined as ir Table 9
{apart from the conventional nuinerical divisor).

Suppose thal the eight treatment combinations are arranged in two
blocks according to their sign in the ABC interaction. The two blocks

would then contain the following treatment combinations:

Block 1 Block 2
(1) a
ab b
ac c
be abc
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TABLE 9

EFFECTS AND INTERACTIONS OF THE 23 EXPERIMENT

(1) a b ab ¢ ac bc abc

AB 141 -1 1 1 -1 -1 1
¢ +1 -1 -1 -1 1 1 1 1
AC 1 =1 1 -1 -1 1 -1 1
BC 1 1 -1 -1 -1 -1 1 1

ABC -1 1 1 -1 1 -1 -1 1

The quantity used to estimate A 1is orthogonal to blocks in that it is
given by }1—(-(1) +a-b+ab-c+ac-bec+abe) and of the four treat-
ment combinations entering the estimate positively two are in each block,
and likewise for the four treatment combinations entering negatively.
The estimate will then contain none of the additive block effects. The
same is true of the other main-effects and the two-factor interactions.
The three-factor interaction is estimated by
-;-( -{ly+a+b-ab+c-ac-bc+abc) and this estimate measures not
only ihe true ADC interaction but alsc the block difference {block 2
minus block 1). It is not possible to separate the true interaction from
the block difference and the interaction and block difference are said to
be completely confounded with each other. Thus the three-factor

interaction cannot be estimated. In many situations it is known that the
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high order interactions are trivial and therefore can be ised as blocking
factors.

The set of treatment combinations in the block of a confounded
experiment which includes the control treatment is called the intrablock
subgroup.

If none of the interactions can be considered trivial and smaller
blocks are desired, the experiment can be replicated several times with
a different effect or interaction confounded with blocks in each replicate.
For example, in the 23 experiment we might replicate the experiment
four times confounding ABC with blocks in the first replicate, AB with
blocks in the second replicate, AC with blocks in the third replicate
and BC witk blocks in the fourth rcplicate. Thus each interaction may
be estimated in the three replicates in which it is unconfounded. This
type of confounding is known as partial confounding.

The rule cf the generalized interaction for 2" experiments is thai il
effects or interacti.ns represented by X and Y are confounded, then so
is XY, obtained by multiplying the symbols together equating any letter
whiz1 is squared to unity. The rule of the generalized interaction for the
3" system is that if pairs of degrees of freedom corresponding to X and
Y are completely confounded, then so are the pairs of degrees of frecdom
corresponding to XY and XY2 where any letter cubed is equated to
unity. By adopting the rule that in any symbol the power of the first
letier should be unity a complete and unique specification of all effects
and interactions is achieved.

An example of the use of this symbolism is the following. Suppose a
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33 experiment is to be arranged in blocks of three. In any system of
confounding four pairs of degrees of freedom must be confounded with
blocks. For example, if ABZC and ACZ are confounded, so is

AB%C x AC% = a%B%c3 - A%R%- A%pt:-aB

and ABZC x ACZA.C2 = A3B2C5 = B2C2 = B4€')4 = BC .

The compcsition of the blocks is easily obtained from the definition
of the effects and interactic .s. In ths above example there are nine

blocks given by the solutions of the equations

"

Pt 2xy by = i {mod 3

x, +2x

1 3 j (mod 3)

]

where i and j each take on the values 0, 1 and 2.

The rule of the genaralized interaction for the pn experiment 18 that,
if effects or interactions denoted by X and Y are completely confounded
with blocks, then so are the (p-1) sets of (p-1) degrees of freedom
denoted by XY, XYZ, cees XYP-I, where any letter raised to the pth
powe_ is to be replaced by unity and the resultant symbol is to be raised

to such power as makes the first letter in it have a power of unity. This

may be proved as folisws: L.et X correspond to the equations

a % ta,x, b ba X =0,=1, =...= (p-1) (mod p)

and Y to the equations

Byx +Byx; ... #B x =0, =1, ... = {p-1) (mod p).
Because X and Y are confounded completely with blocks, the treatment

combinatiors of any one tlock satisfy the equations
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i {mod p)

cr.lx1 + a.zx2 + ...t anxn

Byxy +Byxy, + e +P X j (mod p)
where i and j are each cne of the numbers 0, 1, ..., {p~1). For

these treatment combinations the equatio.is may be combined to give

(a1 +AB )%, + (az + Aﬁz)xz + .0 + (an + Aﬁn)xn =i+ Aj (modp)
where A can take on any value from 1 to (p-l) and the coefficients on
both sides of the equation must be reduced modulo p. This equation
corresponds to the symbol XYA. Thus, the treatment combinations of
any block take on a constant value for any one . { the equations corre-~
sponding to XY’L where XA is any value from 1 to (p-1}. The effect or

interaction XY)t is therefore confounded with blocks for these values of

Al

D. Fractional Replication

A complete factorial experiment investigating all possible combinations
of all the levels of the different factors will involve a large number of
trials when the number of factors is five or more. When the number of
factors is large the number of trials required may even become
prohibitive. One is therefore led to consider the economy of space and
material which will be attained by using only a fraction of the possible
number of treatment combinations at the expense of losing some
information inherent in a complete replicate. The general process by
which information can be obtained from less than a full replicate of a
factorial experiment is known as fractional replication,

Suppose that three factors, A, B and C, each having two levels are
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under investigation and it is known that these factors do not interact.
The relation between the true responses and the effects and interacticns

can be presentad in tabular form as follows:

TABLE 10
RELATION BETWEEN RESPONSES AND EFFECTS AND INTERACTIONS
N A ?° EXPERIMENT
b 2A 2B AB 1C 2AC  1BC  3ABC

(1) + - - + - + + -
a + + - - - - + +
b 1 - + - - + - +
ab + + + + - - - -
c + - - + + - - +
ac + + - - + + - -
be + - + - + - + -
abc + 4 + + + + + +

Suppose that only the four treatme.it combinations that enter the ABC
interaction negatively are considered; namely {1), ab, ac and be. It
is clear from the table that it is impossible to separate the mean p from
the ABC interaction., Similarly the A effect cannot be separated from
the BC interaction, the B effect cainot be separated from the AC

interaction and the T effect cannu. be separated from the AB inter-

action., The estimating equations for this plan are:




p.-%ABC =%[‘(1)+ab+ac+bc_7
1 1
z(A--BC):Z['--(l)-i‘ab-i—a(:-!:N::J
%(B,Ac)=%[-(l)+ab—ac+bc]
1 1

5(C - AB) = Z[-{I)-ab+ac+bc]

With only the four trials, A is completely confounded or aliased
with BC, B with AC, ~ with AB and p with ABC.

{f the factors do not interact all the interactions may be neglected
and the estimating equations can then be used to estimate the mean and
the three main effects, and these estimates are uncorrelated.

The treatments chosen for the 1/2 replicate were selected as those
which entered the ABC interaction negatively. The selection could have
heen those which entered the ABC interaction positively. For most
purposes, it does not matter which of the two halves of the experiment is
chosen.

If by convention, p is denoted by I, the confounding relation may be
expressed as

I = ABC .

This relation is known as the defining contrast or identity relationship
where the equal sign is used to denote ''completely confounded with'.

The remaining three confounding relations may be written as

A = BC
B = AC
C = AB
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These relations may be obtained from the identity relationship by
multiplying both sides by an effect of interest with the rule that any
letter which is squared is to be replaced by unity. Thus I = ABC when
multiplied by A gives

A::ZBC=BC

It should be noted that the 1/2 replicate of the 23 experiment given
by the identity relationship I = ABC consists of the samec treatmen
combinations as one of the blocks of a 23 experiment in two blocks of
four pluts cach where ABC is confounded with blocks.

The identity relationship of a quarter replicate of a 2" experiment

is of the form
I = X=Y = XY

where X, Y and XY are higher order interactions and XY is the
generalized int~racticn of X and Y.
1f, for a 1/3 replicate of the 33 experiment, the identity relation-
ship is given by
I = ABC

the following confounding relations may be generated:

A = AB°c? = BC
ABZC = AC

ABC2 = AB

aB%- ac? - BC?

"




m . n . .
In generala 1/p replicate of a p factorial experiment may be

Fs

specified by an identity rclationship of the form

2 2 1

-1 e
I=X:Y=XY=XY=...=XYP""=2-%xz2=xz%=... = xzF

2

=vzZ =v2%=... =yzP 1= xy"®

S
Z [1‘, s=1, 2, ML} (P'l)]
= etc.

where there are t independent contrasts X, Y, Z, etc.
For a more detailed uiscussion of factorial experiments one may

refer to the texts by Kempthorne {1952) and Davies (1954).
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IV. ORTHOGONAL MAIN-EFFECT PLANS

The experimental plans which are developed in this chapter and
subsequenily presented in the catalogue are called orthogonal main-effect
plans as they permit the estimation of all main effects without correlation,
when all interactions are negligible.

The most commonly used factorial experiments involve factors which
all occur at the same number of levels. These experiments are known
as symmertrical factorial cxperiments. A good deal is already known
about the construction of orthogonal main-effect plans for symmetrical
factorial experiments although a comprehensive catalogue of such plans
has never been published. There are a great many experimental
situations which involve factors that do aot all occur at the same number
of levels. These experiments are known as asymmetrical factorial
experiments. Heretofore the standard technique for constructing
orthngonal main-effect plans for asymmetrical factorial experiments has
becn to combine two or more orthogonai main-effect plans for different
symmetrical experiments. Hence in order to construct an orthogonal
main-eifect plan for the 34 x 23 experiment one would combine the plan
for the 34 experiment in nine trials with the plan for the 23 experi-
ment in four trials to obtain the required plan in thirty-six trials. This
srocedure often requires more trials than the experimenter can afford to
make.

The orthogonal main-effect plans developed in this chapter for both
symmetrical and asymmetrical facterial experiments require the least

number of trials that has yet been attained for such plans. For many
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experiments the suggested plans are so highly {fractionated that there ~re
few if any degrees of freedom available for the estimation of experimental
error. In such situations one must use an estimate of experimental error
which is (i) known from previous experience, {ii) derived from some of
the degrees of ireedom available for estimating main-effects which prior
knowledge indicates are negligible »r (iii) approximat.d by a procedurc
which utilizes a graph and is known as the half-normal plot technique of
interpreting factorial experiments.

The plans consist of th reatment combinations which permit
uncorrelated mnain effect estimates. The treatment combinations are
denoted by the level at which each {actor occurs. Thus the treatment
combination 0112 in an experiment on four factors is that combination
for which the first factor occurs at its first level, the second and third
factors occur at their second levels and the third factor occurs at :s

third level.

A. Weighing Plans

The problem of estimating the weights of small objects placed on a
balance scale was first considered by Yates (1935). The weighing
problem is concerned with the development of plans for estimating the
effects of two-level factors with as few trials as possible. Since it can
se assumed that the weight of a set of objects is the sum of the weights of
the individual objccts, all interactions may be presumed to be absent.
Hotelling (1944) constructed optimum (in the sense of minimum variance)
plans for estimating the weights of (N-1) objects with N weighings on

a chemical balance scale. He proved that a necessary and sufficient
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condition for attaining an optimum weighing plan is that the design
matrix, X say, be a Hadamard matrix, which is a matrix consisting of
I's and -1's such that X'X = diagonal {N,N,...,N) where N is the
number of weighings. Paley {1933) proved that a sufficient condition that
a Hadamard matrix of size N exist is N = 0 {(mod 4), with the exception
of N =2 which is a trivial case.

Plackett and Burman (1946) provided what is effectively a complete
solution of the weighing » oblem when the estimates of the weights are
required to be uncorrelated. Most of the plans which they developed can
be generated by a cyclic shifting of the elements of one treatment
combination successively (N-2J times and then adding the control treat-
ment. When the number of trials N = 0 (mod 4) is not of the form
N=2" the orthogonal main-effect plans given in the catalogue have been
generated by cyclically shifting the elements of the treatment combi-

nations presented by Plackett and Burman.

+. Plans for Symmetrical Factorial Experiments

Orthogonal main-effect plans can be constructed easily for
symmetrical factorial experiments involving (sn-l)/(s—l) factors, each
having s levels, with s treatment combinations, where s = pm and
p is a prime number. The (sn—l)/(s-l) factors can be represented by
n factors ¢2ch having s(= ") levels and all their generalized inter-
actions. Hence one need only choose the treatment combinations from a
complete s" factorial plan and assign one of the (sn- 1}/(s-1) factors

to each of the factors and interactions of the s” plan.

Let the n factors of thc s” factorial plan be represented by
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Xl, XZ’ ey Xn and their generalized interactions by
kX, +k, X +...+k X where k, (i=1,2,...,n) cantake on any value
of the Galois field GF(pm) and it is understood that the coefficient of
the first factor appearing in an interaction is unity. The notation
adopted here for the generalized interac‘ions diffeis from the standard
notation for interactions as given, for example by Kempthorne (1952}, in
order to facilitate the presentation which follows later,

The procedure for conr‘ructing orthogonal main-effect plans will be
illustrated with a plan for four factors A, B, C and D, each having
three levels with nine treatment combinations. In this example s = 3,
n=2 and (sn-l)/(s-l) = 4. The four factors can be represented by two
factors X and X, of the 32 factorial experiment and their general-
ized interactions Xl + X2 and X1 + ZXZ' The treatment combinations

which comprise the orthogonal main-effect plan are

0 0 ¢ 0
0 1 1 2
0 2 2 1
1 0 1 1
1 1 2 0
1 2 0 2
2 0 2 2
2 1 0 1
2 2 1 0

The interactions which are members of the defining contrast (identity
relationship) may be determined by choosing those interactions whose X
representation equals 0 (mod 3). The generators of the interactions in
defining contrast for the example given above are AJBC2 and ACD,
since the X representation of ABG2 is X, + X, + 2()(1 + Xz) =0

(mod 3) and of ACD =X, + {Xl + Xz) +H(X, + sz) = 0 {mod 3},

62




Some plans which may be constructed by this method are given in

Table 11.
TABLE il
INDEX CF SOME MAIN-LCFFECT PLANS
Nurnber Maximum Number Number of
of levels of factors observations

2 3 4
2 K 8
2 i5 16
2 31 32
YA 63 64
3 4 9
3 13 27
3 40 81
4 5 16
4 21 64
5 6 25
7 8 49
8 9 64
9 10 81

The orthogonal main-effect plans with s treatment combinations
which accommodate up to (s"-1)/(8-1) factors can be augmented to

. . . n —_—
yield orthogonal main-effect plans with 2s~ treatment combinaticns.
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The augmented plans can accommodate up to [ 2({s"-1)/(s-1}- 17
factors, each having s = pm levels. In order to illustrate the theory
underlying the augme~tation procedures some preliminary lemmas are
now developed.

represent the clements of the Galois field

2
S~

Let uo,ul, cees Uy

GF(pm) and let ug, u"lz, «++su__; represent the squares of the elements
of GF(pm). The set of squared elements of GF(pm) will be denoted by
GFZ(pm). it is easily ve- .fied that apart from the 0 eclement, the set
GFZ(pm) forms a cyclic Abelian group under multiplication. It follows
from the cyclic property that (i) when p = 2, GFZ(pm) contains each of
the elements of GF(pm) and (ii) when p is an odd prime, the elements
of GFZ(pm) comprise a subset of (s + 1)/2 distinct elements of
GF(pm), where one eleinent occurs once and (s5-1)/2 elements are
duplicated.

Consider one of the facters Xi in a main-effect plan in which each
Xi has s levels each occurring sn-1 times in a total of s” treatment

”
combinations. Let X1 be a pseudo-factor obtained by squaring the

levels of Xi' The following lemmas can now he presented:

Lemma 1; When p is an odd prime, Xi2 + kXi (k an element of
GF(pm)) contains (s + 1}/2 distinct levels, one level cccurring s
times and (s-1)}/2 levels occurring an-l times in s” treatment

combinations.

Lemma 2: When p= 2, X. contains e: .. of the s levels sn-l times.

2
i
Lemma 3: When p= 2, Xiz + kXi ¢ # 0) contains s/2 distinct levels

. n-1 .
each occurring 2s’ times.
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Lemma 3 can be proved as follows. Let X, range over the elements of
GF(pm) which represent the s levels of Xi., As x; ranges over the
elements of the field so does x, + k where k is an element of GF(pm).
Also if X, + k = xj (mod 2) then xj + k= X (mod 2). Hence
xi(x_i + k) = X, X, and xj(xj + k) = X, xj. Thus whatever values of
xi(xi + k) are achievad they are achieved for at least two vaiues of X,

It will now be shuwn that the values of xi(xi + k) are achieved for
exactly two values of X I et y be the generator of the field and let
X, = v® and k= yﬁ. Thus xi(xi + k) = ya{ya' + yﬁ).
Suppose that

Y%+ yP) = YT+ 4P

where

yu?‘yy and yo'+y‘3¥yy

Hence

2+ yeyP = )2y yP

il
(=)

(y* + yy12 +(y* + Yy)Yﬁ

v +y") (Ya’*YY'*‘Yp)

1"

0

This implies that either y‘1 + yy = 0 and therefore y‘1 = yY which is a

contradiction or that y‘1 + yY + y‘5 = 0 and therefore ya + y‘3 = yy which
.s a contradiction. Hence the values of xi(xi + k} are achieved for

exactly two values of X and Lemma 3 is proved.
Lemmia 4 The factor represented by Xiz + kixi + Z k.X., where at
i#i

ieast one kj # 0, contains cach of the s levels sn—1 times.
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Lemma 5: The levels of Xf’ + kl Xi + kZXj which occur in a plan with

the ug level of aIXi+ aZXj, where ks kZ’ ay and a, are elements

of GF(p"") and a, # 0 are given by the values of
ij) - cu, where kZ +ca, = 0 and x,

ranges over the elements of GF(pm).

2 L~
%, * kl"‘i + kzxj + c:(a.1 X, +a

Proof: When aIXi +a Xj takes on the u, level then a x; + aij =u

2 t 1 t

and thus

x, = (ut - alxi)/e’o.z.~

Hence the leveis of the factor xf +X,X; + kX, which occur with the

g -1 .
lev u, of a, % ta, Xj can be represented by

2 2

X+ klxi + kzxj = x.+ Kk, X, + kz(ut - alxi)/a2
-x2+(k -k,a,/a,)x. + (k,/a,)u
1 1 271772 2727

Since k2 tca, = 0. then c = -kZ/a2 .

Thus

x.l2+ (ky -kpa /a)x. + (ky/aj)u, = xi2+ k%, + kzxj +cfa; x, + 32xj) -cu,,
and the lemma is proved.

Two factors Xi and Xj are said to be orthogonal to each other if
each level of Xi occurs the same number of times with every level of
X;- Two factors X.1 and Xj are said to be semi-orthogonal to each
other if {i) for p an odd prime, one level of X. occurs sn"2 times

n-2

and (s-1)/2 levels of X, each occur 2s times with each level of

n-2

X; and (ii) for p = 2, s/2 levels of Xj each occur 23 times with

each level of Xi .
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It tollows from Lemmas 1, 3, and 5 that when p is an odd prime
or when k; - k,a /a, 0, then a X+ azxj is semi-orthogonal to
X.l2 + k1 Xi + k, Xj . It follows from Lernmas 2 and 5 that when p= 2
and k, - kzal/az =0 then a /X, + aZXj is orthogonal to
Xlz + kl Xt kZ Xj . Employing an argument similar to that used in
Lemma 5 it can be deduced that ka + kX, + X, and kXiZ +k, M+ Xi
are orthogonal to each other when k; # k,.

Lemma 5 can be generalized to include more than twe factors as

stated in Lemma ba.

2
Lemma 5a: The levels of X + ki Xi + 2 k.X. which occur in a plan with
j#i
the U level of a, Xtz a . are given by the values of
j#i

xizi-k=x.+ = k.x.+r:(aixi+ Z a,x.)-cu

i 4 d i#i t

where k. + caj =0 forall j#i. If the aJ. and the kj are not of such a

form that kj + caj =0 forall j4#i and some c contained in GF(pm)

then the two factors are orthogonal.

Lemma 6: When p is a prime the complzments in GF(p"') to the
eli:nents in GFZ(pm) are the set of elements in GFz(pm) each multi-
plied by an element of GF(pm) which is not an element of GFZ(pm).

If the set of elements in GFZ(pm) .id their set of complements are

taken together in ore set the elements of GF(pm) are obtained.

Proof: From abstract group theory (see Birkhoff and MacLane (1953))
we employ a lemma which states that two right cosets of a subgroup are

either identical cr vithout common elements. Now the clements of

67




m) forn: an Abelian subgroup of the elements of C—E‘(pm). Hence

2
GF (p
et . 2, m m :
multiplying each element of GF (p )} by an element of GF(p ) which
is not an element of GFZ(pm) yields the complementary set to GFZ(pm).
It is clear from Lieruma 2 that when p = 2 the set complementary to

?
GF“(p"™) is the null set.

We can now present

‘fheo=em 1: There exists a main-effect plan for [Z(s“«l)/(s—l) -17

m N n . .
factors, eachat s=p ievels, with 2s  treatment combinations.

Proof: Tn order to facilitate the presentation of the proof of Theorem 1,
let n= 2. First construct an orthogonal maiu cffect plan for (stj}/(s—l)
factors each at s levels in s2 trials, represented by the two factors

X, and X2 and their generalized interactions X, + X, X, + ZXZ" . X

1 2’ 71
(52-1)/(5-1) -1J] factors represented by

. 2 . . -
+ ZX1 + }\2, vy Xl 1 (s-l)}{1 + X,. These

1
+{s-1)X,. To these add

X;;'+X

(X X

-,

2
2 le-X

[2(s”-1)/{s-11 -1 7 factors in s” observations repreient the first half
of the main-effect plan.

Note from the precceding lommas that when p is a prime number,

Xi + a. Xz and Xi’ + kix1 + X2 ave semi-orthogonal and also that XZ

and X, + xixl ¥ XZ are semi-orthogonal for all a; and ki in CyF(pm)

3

except a, = 0. All other pairs of facters are clearly orthogonal. If

1 '\-2
2=2 and (k, - aI/ai) = 0, then 2, X, + a,X, and X

1 + ki_X1 + X2 are

orthogonal,
The second half of the plan is chosen so that the pairs of factors which
are orthogonal in the first half are also orthogonal in the second half and

pairs of factors which are semi-orthogonal in the first half are serai-
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orthogonal in a complementary manner in the second half. The factors in
the second half which correspond to the factors of the first half can be

denoted by

S
XI,XZ,X1+X2+b1,X1+2X2+b2,...,X1+(S-I)X2+bs_1,k};1+X2,
KXZ4ik X, +X,+c,, kX2+k, X, X, +c kX%tk, . X +X,tc
1 171 2 1? i 271 2 2 0? 1 (s-l) 1 2 s-1
where the cocfficients bl’bz"""’bs-l’ k, kl’kZ’ ""ks—l’cl’cz"”’cs-l

are to be determined.

From Lemma 5, it is seen that the levels of Xi‘ + X2 which occur
with the U, level of X: are given by the values of xi‘ + v, where x
takcs on the values of the elements of GF(pm). Without loss of
generality we may let u = ug = 0. When p is an odd prime, the values
of kX? + X?.’ where k is aa element of \.iF(pm) but not an element of
GFz(pm), which occur with the v = 0 level of X2 are given by the
values of kx?. As shown in Lemma &, kx% complements xi' .

Thus, when p is an odd prime k can take on the value of any
element in GI"(pm\) which is not an element of GFZ(_pm). I p=2 it
is clear from Lemma 2 that k = i.

A method for determining the constants bl’ bz, ey bs-l’
kl’ kZ”‘ . ks-l’ CysCprevvs € s when s = pm and p is an odd
prime is now presented. In order that the levels of ka + XZ which
occur with the 0 level of X1 + aixz + bi be thec complements of the

levels of xf + %, which occur with the O levels of X, +a, X,, b,

2

must be such that the values which kxf - (llai )xl - bi/ai takes when

x, ranges over the field GF(pm) complements the values which

1

x% - (llai)x1 takes. Now x% - (I/ai )x1 consists of one element of
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GF(pm) occurring cace and {s-1)/2 elements occurring twice. Let the

1 2
unique element of GF(pm) be u,. Then x, - (l/ai) %; = u; must have

1

ranges over the elements of GF(pm). Thus

1

ouly one solution as xy

2 _ i _ 2 2 oy
I/ai +4u; =0 and hence 4u, = -I/ai. Since kxl-(llai)x1 b;/a,

1
must complement x;' - (I/ai }x; the equation

1
[+

2
kx] - (1/a;)x; - b;/a;

1
must also have only one solution.
Therefore
1/'a;')' + 4k(bi/ai +u;)=0.
Substituting 4u,; = - lla;:?' in this equation and solving for b, we get
b, = (k - 1)/4kai. (1)

To find the levels of X° +d,X, + X, which occur with the 0 levels
of X2 note that there exists an element of GF(pm), u, say, such that
xi‘ + d.lx1 =u, has only one solution.

Thus di2+ 4u2 = 0 and hence 4112 = - diz. In order that the levels of
kX‘:’ + kixl + X2+ < which occur with the 0 levels of X2 complement

. 2 2 _
those given by xy+ dixl’ then kx1 + kix1 t¢; =u, must have only one

solution. Substituting 4u, = - df in this equation and solving for c, we

~
5.

.2 2
c; =k /4k - af /4. (2)

To find tie levels of X5+ d. X, + X, which occur with the 0 levels
of X, +2a,X, note that there exists an element of GF(p™, u, say,such

that x% + (di - I/ai)xl = uy has only cne solution.
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Thus

1.2 2 _ _ 2
(di- l,ai) +4u3-0 and 4uj = -(di— llai) .

Since kxf + (k1 - .‘/ai) %, + (ci - b:/ai) must complement

2 .
x|+ (di - llai) Xy the equation
& —
kx| 1k, - llai) X+ (c.1 - bi‘/ai) = u,

must also have only one solution as x; ranges over the clements of

GF(p }. Therefore
2 ;
! - - =
(ki - hai ~ 4k l (ci bi'ai) u3} =0.

Substituting 4uy = - (di - llai)2 and equaticns (1) and {(2) into this

equation we get

ki = kdi . {3)

Hence equation (2) can be rewritten as

2
c; = df (k-1)/4. (4)

Thus k is determined by choosing an element of GF(p™ ) which is
not &n element of GFZ(pm). By letting a, =1, 2, ..., 8-1 wecan

determine bs bz, .e-s b from equation (1). Then setting

s-1
d. =1, 2, ..., s-1 we determine kl’ kZ’ ey ks-—l from equation (3)
and Cyr €51 <vey €y from equation (4).

The procedure employed above cinnot be applied when p = 2 since
xf +cx,y consists of s/2 elements of GF(Zm), each occurring twice.
Thus there exists no clement u such that x% + ex; = u must have only

cne gsolution.




We deduce from Lemme 2 that when p = 2, then k= 1. In ocder

that the levels of X':‘ ~ XZ which cccur with the 0 levels of
X, ~a, X2 + bi(ai =1, 2, 3, ..., s-1) compienent the levels of
X‘; + Xz which ocecur with the 0 levels of X1 + aiX2 thon the levels

given by x% - (I/ai)xl - bi/ai must complement the levels given by

x:.:‘ - (l/ai)x1 when x, raages over GF(Zm). It is easily verified that

1
m-~1 m .
b can be any one of the 2 elements of GF(2 )} which are not

5
given by xi’ - (l/ai):-c1 .

In order thai the levels of X1 -+ Ki Al + XZ + ci which occur with the
2
1

the 0 levels of XZ‘ then the values given by x

0 levels of X2 complement the levels of XU + 4. X1 + XZ which occur with
2z

1+kix

p 1 ¢; must comple-

ment the values given by x12 T di x,. It caa be shown that k.1 = di and ;
H i
can be any one of the -1 elements of GF(Zm) which are not given by
the values of :.;2 +d. o ®x, .
1 i1

By finding the values of Xf + kiX1 + XZ te which occur with the 0
levels of X1 + aiX2 + b.l and which complement the valacs of
XZ +d. X, + X, that occur with the 0 levels of X. + a.X,, a set of b,

1 i1 2 1 i72 i
ard c; which satisfy all the requirements to have the second half of the plan
complement the first half of the plan can be determined.

When n >2 the same procedures will yield the desired plans if
L~mma 54 is ctilized in place of Lemma 5. Thus the theorem is pruved.

The orthogonal main-cffect plans for [2(sn~1)/(s-1) - 1J factors
each at s = pm levels with 2s" treatment combinations which are

included in the catalogue are the following? 37 in 18, 325 in 54, 49 in 32,

511 in 50. Bose and Bu.,h {1952) have constructed the plans for 37 in 18




and 47 in 32 by other procedures and have shown that [Z(SH-I)/(S-I) -17
is the maximum number oI factors, each at s levels, that can be
accommodated in an orthe: onal main-effect plan with 2 s” treatment

combinations.

C. Condition of Proportional Frequencies

In the complete factorial experiment the levels of a factor occur
equally frequently witl each of the levels of any other factor. This condi-
tion is sufficient to allow ancorrelated estimates of all effects -ad inter-
actions. This condition is also sufficient to allow uncorrelated estimates
of the main effects in a main-effect plan. Houv cver for main-effect plans
the condition of equal frequencies is not a necessary one. We will show
that a necessary and sufficient condition that the estimates of the main
effects of any two factors in a main-effect pian be uncorrelated i« rhat the
levels of one factor occur with each of the levels of the other factor with
proportional frequevcies. The condition of proportional frequencizs, will
be deduced for a main-effect plan on two factors, A and B, occurring at
r and s levels, respectively. This was stated first, it is believed, by
Plackett {1946) but his proof was found to be obscure. Therefore a
rclated proof is prescnted below.

If the plan is orthogonal then the estitnate of any component of factor
A is orthogonal with the estimate of anv component of factor B. Let the
components of factor A be represented by {r-1) orthegonal contrasts,
and the components of factor B by {s-1) orthogonal contrasts. Denote
by A and B the u-th orthogonal contrast among the r levels of

factor A and the v-th orthogonal contrast ameong the s levels cf




factor B, respectively. Denote by a. , Ay e a'ru the coefficients

1u

of Au’ and by b b - bsv the coefficients of Bv' The model

v T2v? 0T
which exhibits these orthogonal contrasts is

r-1 s-1

= = b - 3= -1):
yij ot “:1 aiuAu + VE)I 'ijv + eij’ i=0,1, 2. ..., {x-1);

j=0,1, 2, ..., {s-1), where "'ij is tie observed yield of ‘he treatment
comkbination for which factor A occurs at the i level ara factor B
occurs at the j level, u 1is the overall mean and €3 is the experi-
mental error associated with the observed yield yij .

Let n = the number of trials in th:e plan,

n = the number of times the 1 levei of factor A occurs
in tue plan,

n = the number of times the j level of factor B occurs
-J in the plan,

n o= the number of times the i level of factor A occu.s
J with the j level of factor B.
Hence £n..=n, , Zn,.,=n . and I n..=n,
; i O .j i3 ii

Theorem 2: A necessary and sufficient condition that the estimates of the
components of two factors A and B, in a main-effect plan, be orthogonal

to each other and also to the mean u is that TR N j/n.

Proof: In order that the estimates of the components of factors A and B

e orthogonal to each other and also to the mean, the design matrix X

must be such tha* X'X is a diagonal matrix. With the model

r-1 s-1
- . i = 3 - .
yij-p+ 7:: aiuAu+ ? b:'er+eij' i=0,1, 2, ..., (r-1);
u=1 v=l -

i=0,1, 2, ..., (s-1), the following equations must hold in order that

14




the design matrix be of the required form:

iEaiun.l_ =0;u=1, 2, .vo, {r-1) (5}
E.:ijn.J=0;v=l, 2, vooy (s-1) {6)
J
=0 al 3
Tag Py, T 0T {7
Zb, b,,n.=3:v#v? (8)
g g TR
J
and i}_“,jamijnij=0;u= 1,2, 000, (r-1);v=1, 2, ..., (s-1). (9

Equations (5), (6) and (9) can be expressed in matrix notation by

equations (10}, (11} and (12):

. .
AN = 91‘-—1,1 (10)

where A' is an {r-1) x r matrix of coefficients of AL

N' ={a, n, ...n and O is arn mixn matrix of zeros;
r. = (g 1y, (r-1). ) mn Rt ’

BIN 4= 9%.1,1 (1)
where B! is an {s-1) x 5 matrix of coefficients of B, and
Nfs= {n.o Do B ofeoq) and
AINB = gr-i,s—l (12)
where N = (nij)'
Equations (7) and (8) are autumatically satisficd cince the a. and the

ij are coefficients of the orthogonal contrasts. Thus we need only show

that a necessary and sufficient condition that A'NB = 0 given

r-1,s5-1"
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that AN = @ , and BIN =6_, ., isthat n,. =n, r ./n,
re r-1,1 .S §~1,1 ij i. .

7

which expressed in matrix notation is N = N N'sfn.

To show that this condition is sufficient, assurae that N=N_ Nf /n.

Tren A'NB = AIN_ N B/u=0_ . , since A'N_ =8 | =nd
r. .s r-1,s-1 r. r-1,1

9, s-1"

To show that this condition is also necessary, assume that

ANB =0 Since n. = n,, and n .= £ n.,, then N_ = NE
i. PR § S RS | r. sl

r-1, s-1 j i
and N!' = E, N, where T is an mxn matrix whose elements are
.5 1r mn
all unity. Let ¥ = [_rErl H A] . Since the columns of A are the
coefficients of (r-1} orthogonal contrasts, P must be non-singular.
r
Let Q= ] E B] . Since the columns of B are the coefficients of

-

{s-1) or.hogonal contrasis, Q must be non-singular.

E, 1
Now PWNQ =[..) 5| N [E 1i B
Al steo
i 3 1
_r o NB n 91, s-1
1 1
ANr. ANBJ _gr-—l,l gr—l,s—l

Thus P'NQ is of rank one. Since P and Q are both non-singular
matrices, N must have a rank of one. Hence each rowof N is a
multipie of the first row and each column is a multiple of the first column.

Therefore nij/ni =n j/n or nij =n; n j/n which can be expressed in

. . . .

matrix notation as N = N N? S/n.
The theorem can exsily be generalized to prove that a necessary and
sufficient condition that the esti.nates of the components of k factors in

a main-effect plan be pairwise orthogonal and alsv orthogonal to the mean

76




j is that the levels of each factor occur with the levels of any other
facior with proportional frequencies. This generalization can be made by
showing that for any pair of factors the proportional frequency conditicn

i5 both necessary and sufficient to yield orthogonal estimates.

D. Plans for Asyrnmetrical Tactorial Experiments

If the levels of each factor are arranged so that they occur with the
levels of anv other factor with proportional frequencies, it is possible to
derive new classes of orthogonal main-effect plaus for asymmetrical
factorial experiments. One such class permits the estirnation of all

main effects without correlation for an experin:cat involving ty factors

at s, levels, tz factors at s, levels, up to t, factors at 8y levels,
with srll trials, where $1 is a prime or the power of a prime,

> > ce >
§;17 8,7 -s- Sk and

k
s _1y/ -
151 t, < {.,1 1).(s1 1).

A method of constructing an orthogonal main-effect plan for the

t t t
s
X X K

factors occurring at 5y levels to factors occurring at s levels

. . n . : :
experiment in sy trials involves collapsing

(i=2, 3, 4, ..., k) by utilizing a many-one correspondence of the set
nf sy levels to the set of s levels. First construct an orthogonal
main-~effect plan for the symmetrical factorial experiment involving
(srl1 -1)/(51-1) facto s, each at s, levels, with s? trials, where s,

is a prime or the power of a prime. Collapse the levels of t, of these

fact>~s to s, levels, where s.< s;» by making 2 many-one
(= (&
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jevels to the set of s. levels.

correspondence of the set of 3 2

1
Similarly collapse the levels of ty of the original factors to 53 levels,
where 53< 52< s and so on.

If for some i, sy = sfin, then a factor with 8, levels can be
collapsed into (sl—l)/(si-l) factors each having 8 levels. Since there
exists an orthogonal main-effect plan for (s;n -1)/(51—1) factors, each
at s, levels. with sli’n treatment cornbinations, we can replace each of

m e
the s, levels by one of the sy 8] treatment combinations. To

1
illustrate this pcint consider a facter at s, 4 levels. There exists an
orthogonal main-etfect plan for three factors, each having two levels, in

four treatment combinaticns, namely: 000, 011, 101 and 110.

If we make the following correspondence:

Four-level Twe-level
factor factors
0 —_— 000
1 > 011
2 ——d 101
3 — 110

the four-level factor is collapsed to three two-level factors.

If the (si-l) degrees of freedom for each of the t factors at 8
levels are represented by (si-l) orthogonal contrasts among the 8
levels, the estimates of these contrasts for any factor will be uncorve-
lated with the estimates of the contrasts for any other factor because the
correspondcnce scheme automatically guarantees proportional frequencies
of the levels of each factor.

An orthogonal main-effect plan for the 22 x 32 factorial experiment
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with nine trials is now coustructed to iliustrate the technique of
coilapsing levels. First construct an orthogonal main-effect plan fo

four factors, each having three levels with nine treatment combinations.
co000
0112
0221
1011
1129
1202
2022
2101
2210

Collapse each of the first two factors to two-level factors using the

following correspondence scheme:

Three-level Two-level
factor factor
0 — 0
1 — H
2 — 0

The resulting treatment combinations constitute an orthogonal main-

effect plan for the 22 x 3& experiment and are displayed below.

00 00 10 02
81 12 00 22
8¢ 21 01 01
1¢ 11 00 10
11 20

Doubling the numher of trials and doubling the number of levels of one
factor leads alsc to some new orthogonal main-effect plans. To
illustrate the construction procedure consider the 34 planin 9
observations and repeat it, replacing the levels 0, ! and 2 in one of

the factors by the levels 3, 4 and 5. This givesa 6 x 33 plan in 18
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11 a2
trials. The collapsing procedurs will then give the 5 x 3 1 x 2 2 plan,

2
= n, = 3, in 18 trials.
i=1
t t t
e £l r Y b ] : £ - 1 £ +l 1 2 k
11 C1as8 O LrtnOgoyw *L IiniT IlIgC gians T ng 8, X S X...Xs
= i 2 k
: . n . . s
experiment with 5 trials where s, >s,>...2> s, restricis the number
i Ls -

of trials to be equal to s? where §; icthe largest number of levels.

Thus, for example, one would require sixteen trials in order tc construct
an orthogonal main-effect plan for the 4 x 24 experiment using the
procedures suggested above. A second class of orthogonal main-effect

L.
plans can be derived for the s, ¥ slz X ... X8 k experiment in s?

trials, where 54 is a prime or the power of a prime, 1< 8,< ... < Sy

k
: A _
and 1%1 At < (s, !)/(a1 1) where 1=X3,<A, <A < ... <A, the )\.1

being integers. An orthogonal main-effect plan of this class exists for
4 . . . "
the 4 x 2~ experiment with only eight trials.

Theorem 3: Consider an urthegonal main-effect plan for (sn -1/ {s-1)

n . . . ,
trials, where s is a prime or the

factors, each at s levels, with =
power of a prime number. Then a factor at t levels, where

2 . . .
$ <t< s, can be introduced as a replacemeant for a suitably chosen set

of {s+1) factors in such a v vy as to preserve orthogonality of main-

«ffect estimates.

~ Z . .
Proof: Let t=s" . There exists an ortnogonal main-effect plan for
2 ; . 2 ..
{s"-1)i{s-1) fuctors eachat s levelsin t=s" trials. Hence a factor

having t = o2 levels can replace (sz— 1)/{s - 1) = {s+ 1} factors each

30




> 2

- . Y - ~ - &

having s levels. If 1< s~ thepa faclor having s~ levels can replace
{s+1) facters each having s levels and then collapsed to a t-level
factor by a meny-one correspondence scheme.

Corollary 1: The maximum number of t-level factors (s< < sz)

which can be introducced into an orthegenal main-gffect plan fcr

n - - fey n et :
{s"-1)/(s-1} factors, =ach at s leve's. with & trials is

(1) (sn-i}/(sz—l) if n is even and (ii) the largest integer less than or

n s odd.

Py

n Z < 7
equal 0 [{s -1j/{s"-1, - 17

Corollary 2: A factor at t levels, where s e t< &P can be
introduced as a replacement fox a suitably <3 8en set of {E,m- 1)7{s-1)
factors each having s levels in such = way as to preserve the
orthogonality of main-effect estimates.

This replacement procedure will be .illustrated by corstruct 14 an
orthogonal main-effect plan for the 4 x Z’E experiment in eight trials.
First construct »4 orthagonal oxain-effect plan for the 27 experiment.
The seven two-level factors =z be represented by X*L’ XZ’ XI + XZ’
Xa X1 + XE’ XZ t X3 and Xl + X2 + X3 . The treatment combinations

for this plan are the folowing:
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1101001

t is known that there exists an orthogonal main-efiect plan for the

‘LHJ

~ experiment EIn four irials. The treatment combinations for this pla»

are (E26), (021), {101) and (1 10). Thus by choosing three

l

factors of the Z plan whose X representations are such that the
gene==tmed lnteracstion of any two of the three factors is the third

&= £

fzactor, timzss two~ievel far srs can be replaced by a four-level factor

zczordéng-tethe following correspendence scheme

Two~level Four-level
factors factor
0C0 —— o
0il — 1
1¢1 — z
110 —— 3

Since the X representations of #he first three Jactors of the above plan
are X, X2 and X1 + XZ’ thesc three factors can be replaced by 3
four-level factor and the srthogonal main-sffect plan for the 4 x 24

experiment in eight trials is given by the following treatme.c combinations:

0 0006O
0 111l
1 0611
I 11020
2 0101
2 1810




3 1001

By collapsing the four-level factor to a three-level factor, an
orthogonal main-effect plan for the 3 x 24 experiment is obtained.

It can be easily verified that a suitably chosen set of (sz-l)/(s-ﬂ
factors, each having 53 levels, occurring in an orthogonal main-cffect
plan with 56 trials can Le replaced by (53-1)/(5-»1) factors, each
having s2 levels. This p- sposition can be illustrated by replacing
three eight-level factors by seven four-~level factors in an orthogonal
main-eifect plan with sixty-four trials.

Consider the crthogonal main-effect plan for the 263 experiment in

sixty-four trials. Let each factor be renresented by an effect or
interaction of the 26 factorial experiment, namely Xl’ XZ’ X3, Xd__,
X5’ Xb or any one of their generalized interacticre. From Corollary 2
of Thevrem 3 it is clear that each eight-level factor introduced into the
plan replaces seven two-level factors. Let us denote three eight-level
factors by A, B and C. Table 12 gives the X representaticns for the
two-1evel factors which are replaced by the three eight-level factors.

Tt will be noted in Table 12 that the X representations of the two-
level factors which are replaced by the eight-level factor C are the
generali-ed interactions of the X representations of the two-level
factors which are replaced by factors A and B. Thus each row of the
table represents three two-level factors which can be replaced by a
four-level [actor. Hence it is clear that three eighi-level factors can be

replacec by seven four-level factors.




TABLE 12

TWO-LEVEL FACTORS REPLACED BY EIGHT-LEVEL FACTORS

A B C
X1 X2 X1+X2
X2+X4 X1+X5 X1+XZ+X4+X5
X1+X2+X4 X1+X2+X5 X4+X5
X3*X5 X11X2+X3+X5+X6 X1+X2+X6
X1+X3+X5 X1+X3+X5+X6 X6
X2+X3+X4+X5 X24X3+X6 X4+X5+X6
XI+X2+X3+X4+X5 }(3+X6 XI+XZ+X4+X5+X6

It is evident that the use of factors for which the levels occur with
proportional frequencies also yields orthogonal main-effect plans fer
symmetrical factorial experiments. For example, an orthogonal main~
effect plan for the 35 experiment can be constructed with sixteen trials
by collapsing all the four-level factors in the plan for the 45 experiment
to three-level factors.

The use of factors whose ievels occur with proportional frequencies
also permnits the construction of orthogonal main-effect plans for factors
for which the number of levels is not equal to a prime or the power of a
prime. One such plan with forty~-nine trials permits uncorrelated main-

effect estimates for the 68 experiment. This plan can be constricted by
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rollapsing the seven-level factors to six-level factors in the plan for the

78 experiment.

E. Efficiencies of Main-Effect Estimates

Although any many-one correspondeuce of the set of s, levels to the

1
set of 8; levels will yield proportional frequencies of the levels, there
arises the problewm of which correspondence is '"best' in some sense.
The problem may be solv’ i by determining the efficiencies of the main-
effect estumates obtained using proportional frequencies relative to the
estimates which would result rom using equal frequencies of the levels
of each factor.

As an illustration we will calculate the relative efficiency of a three-
level factcr in a main-effect plan with twenty-five trials.

Assume the correspondence scheme used to coliapse a five-level

factor to three levels is as follows:

Five-level Three-level
factor factor
0 —_ 0
1 — 1
2 — 2
3 » 2
4 — 0

The levels 0, 1, and 2 occur in the ratio!s 2:1: 2. Thus for this
factor the 0 level occurs in ten treatment combinations, the 1 level
occurs in five treatiuecut combinations and the 2 level occurs in ten

treatment combinations.




The variance of the linear effect estimate of this factor is equal to
2 . . . . s
77/20 and hence the information on a unit basis is equal to

20/25¢° = 4/5 0_2 . Thec variance of the linear effect estimate of a three-

) n 2 n-1 __..,. . o er o
level factor in 37 trials is egqualio ¢ /2.3 and ihe information oh a
. s o n=1l,.n 2 2 . i
unit basis is 2.3 [37¢" = 2/307. Hence the reclative efficiency of the

linear effect estimate is equal to 4/5 x 3/2 = 6/5.

The variance of the quadratic effect estimate for the three-level
factor in twenty-five triale .s equal tc 0-2,’ 4 and the information is then
equal to 4/25 0'2 . The variance of the quadratic effect estimate with 3°

n-2

trials is equal to o-zl 2.3 and hence the information on a unit basis is

equal to 2/9 0'2 . The relative efficiency of the quadratic effect estirnate

is therefore equal to 4/25x 9/2 = 18/25.

The relative efficiencies of the estimated effects are presented for
various proportional {requencies in Table 13 . One would chose the
proportional frequencies which give the greatest efficiency of estimates.
Thus for example, if an experiment in twenty-five trials involved two-level
factors the two levels should occur in the ratio 2 : 3 rather than in the
ratio 1: 4 because the efficiency of the 2 : 3 ratio is 24/25 whereas

the efficiency of the 1:4 rutio is only 16/25.
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TABLE 12
RELATIVE EFFICIENCIES OF MAIN-EFFECT ESTIMATES

Level 0 1 Efficiency

Proportional frequency

1+ 2 8/9
2 3 24/25
1 ; 4 16/25
3 - 4 48/49
2 : 5 40749
1 : 6 24749
Level 0 1 2
Contrast Proportional frequency
Linear 1:2:1 3/4
Quadratic 1:2:1 9/8
Linear 2:1:2 6/5
Quadratic 2:1:2 18725
Linear 1:3:1 3/5
Quadratic 1:3:1 27125
Linear 2:3:2 671
Quadratic 2:3:2 54749
Linear 3:1:3 9/7
Quadratic 3:1:3 27749
Linear 1:5:1 3/7
Quadratic 1:5:1 4549
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F. Blocking in Main~Effect Plans

Even though the orthogonal main-effect plans are highly fractionated
these plans may still require more trials than can be carried out under
uniform conditions. Thus it would be desirable to divide the experi-
mental data into smaller blocks in such a manner thai the main effects
may still be estimated without correlation. In this secrion we will
illustrate the use of some of the factors in an orthogonal main-effect
plans as blocking factors.

Consider the orthogonal main-effect plan for the 34 experiment with

ine trials. The treatment combinations for this plan are

0000
0112
0221
1011
112¢0
1202
2022
2101
2210

If there are only three factors under investigation the fourth factor of the

above plan can be used as a blocking factor to yield the following blocks:

Block 1 Block 2 Block 3
0090 022 011
112 101 i2¢
221 210 202




The esiimate of the main effiects of tte three factors are clear of the
block effects since each level of the threc factors occurs once in each

block. The linear eifect of the first factor is given by
£(2214210+202-000-022-011).

it is evident that each block effect enters this estimate once positively
and once negatively and hence the estimate is clear of block effects.

If the four factors in the orthogonal main-effect plan are represented
by Xl, XZ’ X1 +X2 and agt ZXZ the use of the fourth factor as a
blocking factor is equivalent to confounding the factor represented by

Xl + 2%, with blocks.

2
In general, if two factors are used as blocking factors then 50 are the
facters represented by the generalized iateractions of their X represen-
tations. For example, if the geven factors in the plan for the 27
experiment with eight trials are represanted by Xl, Xz, Xl +X.,,
1 in-
X3, Xl + X3, X2+ Xa and Xl + X2+ X3 an orthogona! main-effect plan

for the 2% experiment in 4 blocks of 2 treatmeni combinations can be
obtained by using the factors represented by Xl, Xz, Xl +X, as
blocking factors. This is equivalent to confounding Xl, X, and X, +X,
with blocks.

Now considexr the orthogonal main-effect plan for the 4 x 32 x 26

experiment with vixteen trials. The plan is comprised of the following

treatment combinations:
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000

011
022
¢t1i1

101

361
312
321
310

The following orthogonal main-effect plans which utilize one or more

of the factors as blocking factors may be constructed from the given plan:

2

00Go0O
161110
110011
01i11vu1l
011011
110101
10100090
000110
101101
00011
611110
11000
110110
011000
600101

101011

(i) 4x3"x 2” in 2 blocks of & treatment combinations:

Using the last two-level factor as a blocking factor the two blocks

consist of the treatment combinations presented below:
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Block 1 Block 2
000 00000 022 11001
011 10111 011 01110
121 10100 101 01101
ii2 00011 110 11010
220 01111 202 10110
211 110060 211 00001
301 11011 321 00010
312 01100 316 10101

in 4 blocks of 4 treatment combinations:

(i) 4x3%x2
Consider the last three two-level factors only. The levels for
these three factors occur inthe four sets 000, 011, 101 and
110 each occurring four times in the sixteen trials. Th ireat-
ment combinations of the first six factors can be biocked according
to the paiticular set to which the levels of the last three factors

belong. Hence the four blocks are:

Block 1 Block 2 Biock 3 Block 4

000000 022110 011011 011101

121101 101011 110110 112000

211110 211000 202101 220011

312011 310101 321000 301110
(iii) 32 x 26 in 4 blocks of 4 trcaiment combinations:

Utilizing the four-level factor as the blocking factor the four

blecks are:




(iv)

Block 1

g6c0C0000O0

Pt
o
oot

51110
22110011

11011101

4x3x26

in 4 blocks of 4

Block 2
01¢11211
10110101
21101000

12000110

Block 3
02101101
11000011
200311110

11110000

Block 4
01110110
12011000
21000101

101019011

treatment combinations:

This plan can be constructed by considering the first three-level

factor tc be a four level factor and using that factor as a blockin
-4

factor. If every second 1 in the first three-level factor of the

main-effect plan fcr the 4x 3

2

x?6

experiment is replaced by a

3 the sixtcen treatment combinations then comprise a3 main-effect

plan for the 42 x3x 26

Block 1
00000000
11011011
22101101

31110110

Block 2
01101110
10110101
210608011

32011000

e> reriment.

Block 3
02110011
11101000
20011110
31000101

Block 4
01011101
12000110
211100080

30101011

It is clear that in each of the above plans, the main-effect estimates

and the block effect estimates are uncorrelated.




G. Randomization Procedure

An important aspect of most expacrimental situations is the fact that
each experimenrtal unit can be subjected to only one of the treatments of
interest. Becaucz of this fact the variakility due to heterogeneity of
experimental units will contribute to experimental uncertainty. To obtzin
some control of this variability the device of randomization is used in
the statistical design of exneriments. This technique implies, essentially,
that random methods of selection and assignment are employed in
carrying out the experiment.

The procedure recommended for assigning treatments at random to

the experimental units of an orthogonal main-effect plan is as follows:

{i} Choose the appropriate plan.
{ii) Randomly assign the factors to the columns of the chosen plan.
(iii) Randomly assign the levels of each factor to the rnumbers
0, 1, 2, ..., representing the levels of a factor.

(iv} Randomly assign the treatments to the experimental unzts.

To illustrate this procedure we shall describe the randumizarion
procedure to be followed with an experiment involving three factors
A, B and C, each having three levels and one factor, D, it two ievels.
The appropriate orthogonal main-effect plan for this experimen: is given

by the following nine treatment combinations.
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¢ 1 1 0
0 2 2 1
1 0 1 1
1 1 Z 0
i 2 4 ¢
2 0 2 0
2 1 ¢ 1
2 2 1 0

Assign the factors A, B and C at random to the first three columns

of th~ 2bove plan and assign factor D to the fourth column. Then, for

cach of the factors A, B and C randoraly assign the three levels to 0,
1 and 2. Similarly for factor D assign the twolevelstio 0 and 1 at
random. Then these treatments are assigned to nine experimental units

at random, for example, by testing the ccmbinations in random order.

H. Analysis of Main-Effect Experiments

Ar important feature of the full factorial arrangement is that the
main effects and all interactions can be estimated without correlation
Since the main-effect plans developed in this report allow uncorrelated
estimates of all main effects the analyses of these experiments are
similar to the analysis of a complete iactorial experimert. Estimation
is based cn the general procedure described in Chapter Ii, and a quick
review of aspects relevant to main effect plans will now be given.

The multiple regressioc.. model far an orthogonal main-effect experi-

ment can be written in matrix notatior as y = Xp + ¢ where 3 is the
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vector of effects and interactions. The estimates of the cifects and

interactions are given by B = (X’X)-l X'y, where (X’X)-l is the .
variance-covariance matriz. The property of uncorrelated estimates is
reflected in the fact that the variance-covariance matrix is a diagonal
matrix.
To illustrate the estimation procedure we consider the plan for two L
two-level factors, A and B, and two three-level factors, C and D,
the levels being equally spaced, in nine trials, when all interactions are
assumed tc be abisent. Tine plaw is given by the following set of treatment

combinations:

0 0 2 1

I 0 1 1 .
y

1 1 2 0

1 0o 0 2

The responses Yijkm may be expressed in terms of the main effects
as

C. +e¢ C.+4d D
kLL K. Q mLL

A+b.B+ ¢
3 Q

+d DQ+

Yijkm = B 1 3 me

ijkm

where A, B,CL, C and DQ are the effects of the respective

Q' PL
factors and a, bj’ ckL, CkQ’ dmL, de are the coefficients of the
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orthogonal contrasts defining the corresponding effccts. The factors are

assumed to be quantitative factors and the levels of thc factors are
equally spaced. *

If any of the factors are qualitative, they can still be treated as
quantitative factors, except that what are contrasts of specific meaning
in the guantitative case, such as linear and quadratic effects, are merely
contrasts among the 'evels of the qualitative factors. For example, if
we use the numbers 0, 1 and 2 to denote the levels of a factor, F, at
three levels and get what look superficially to be linear and quadratic

effects, they are in fact

L:FZ-FO

Q=F2—2F1-FO=(F2-F1)-(FI-FO)

where L and Q denote the linear and quadratic effects and Fi denotes
the treatment combinations which contain factor F atthe i level. From
such calculated effects one can determine any contrasts which seem

relevant. For instance

F,-F, = (L+Q)/2

F,-Fy=(L-Q)2.

*If the levels of quantitative factors are not at equally spaced intervals
the effects can still be written in terms of orthogonal contrasts. A
procedure for obtaining orthogonal polynomials {or unequally spaced levels
is given in section C of Chapter V.
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The matrix of known coefficients™ is given by

w 32 3B G 3Sq D 3D,
1 -1 -1 -1 1 -1 1]
1 -1 2 0 -2 1 1
¢ 1 -1 -1 1 1 0o -2
X =11 2 -1 0 -2 n -2
1 2 2 1 1 -1 1
1 2 -1 -1 1 i 1
,. 1 -1 -1 j 1 1 1
_i 1 -1 2 -1 1 0 -2
o _1 -1 -1 0 -2 -1 1 i
Hence the information matrix is
- K 0 0 0 0 0 o ]
0 18 a 0 0 0 0
0 0 18 0 0 0 0
XX = 0 0 0 6 0 0 0
| 0 0 0 0 18 0 0
0 0 0 0 0 6 0
_0 0 0 0 0 ¢ 18 ]

*® . .
The coefficients of the parameters are obtained by a convention
which is discussed in saction C of Chapter V.




Since XX is a dizgoncl matrix the plan is orthogonal and the variance-

covariance matrix is given by

~

2

>

p 2 2 2
1*
34 -1 -1 -1
1‘ 2?2 -
§-B -1 2 1
- 1
CL 18 -3 0 3
1 -~
-3_CQ 1 -2 1
DL =3 3 0
ip 1 1 -2
37Q L.
b -

-2

~2

<

[
=)
o

o O O O ©
o

(=T = I - ]

~ Vs “
2 2 2 2 21 v,
2 2 -1 -1 -1 Ya
2 -1 -1 2 -1 vy
3 -3 3 -3 0 Ys
11 1 1 -2 Ye
-3 3 3 0 -3 Yo
1 1 1 -2 1 Ve

L 79 -

where Yir Yo -ces Vg 2re the responses of the nine treatment

combinations in the order presented in the plan.

Thus, for example,

<8




1.\ 1 -
34 T I Loy Yamv3tiyat 2yst 2y, m vy - Vg Vo

and C

i
z [-Y1+Y3+Y5-Y6+Y7'Y8]~

The variances of the estimates are obtained from the variance-

covariance matrix. Thus,

v’r(:‘;.} = var (.:5‘ = 0'2/2

varl” ) = var (f) ) = 0'2’6
. /L L #

var (:’3 } = var (f) ) = az,’Z
Q Q

2, .
An unbiased estimate of ¢~ is derived from the sum of squares of
deviations about the estimated values, namely
o = s(yly - p'X'y)
The sum of squares in the analysis of variance associated with any
contrast is merely the square of the contrast divided by the sum of
squares of the coefficients of the contrast. Hence, the sum of squares

due to %A is

&~

2
5 L=y~ Y2 Y3+ 2yy*t 2y5+ 2y - yq - Vg - Vod
The sum of squares due to A is then

>
YR

Loy, ~yy-y3+ 2y, +2y5% 2y, -yg=~¥g-ygd

£oj r=

If the total sum of squares is corrected for the mean, the partitioning

for the analysis of variauce is given in Table 14,
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TABLE 14

PARTITIONING OF ANALYSIS OF VARIANCE

Scurce Degrees of Freeadom
A 1
B 1
Cy 1
C 1
i 1
1
Error 2
Total 8

It is clear that the two degrees of freedom available for estimation of
error are the result of collapsing twc three-level factors to two-level
factors. The cstimate of error can be partitioned into single degrees of
freedom as follows. Consider the levels of facter A and factor B as

they were before being collapsed. The levels are then given as

Levels o1 factor A: 600111222

L.evels of factor B: 01 201 2012

In urder to collapse a three-lcvel factor to a two-level factor we make

the correspondence

1Cu




Three-level Two-level

facior factor
0 —_ 0
1 —_ 1
2 —_— o

i factors A and B were three-level factors then
A, = 1 {(-v,-75~ + {yg+ }
L - 3% 1T Yz T Y3 T YT ¥g T Yy

and B

"

1
L =8 (-¥i4Y3-Y44 vy =Yg+ Yg)

Since these two factors have only two levels and the level of factor A is
0 for each resporse in the isilinate A L and the level of fuctor B is
0 for each response ina the estimate BL’ then these contrasts are

estimating pure error. Thus, the two single degrees of freedom

estimates of 0_2 are given by
1 ) 2
B'('Yl ')‘2'Y3+Y7+Y8+Y9)
d 1 + . F ¥ z
an zl-yty3-vytyg-Yy¥Y¥gl

The partitioning of the analysis of variance is presented in Table 15.
If several estimates of error are possible one can determine whether
they are homogcneous estimates of error {e.g. Bartlett!s test) and if
they are found to be hor~ogeneous thcy can be combined to give a pooled
estimate of error. Evidence of estimates of error being not pooclable is
evidence that there are interactions present in the situation, and further

experimentation to explore these is needed.

101




TABLE 15

PARTITIONING OF ANALYSIS OF VARIANCE

Source Degrees of Freedom
A 1
B 1
CL 1
CQ 1
DL 1

]
DQ 1

Error A i

Error B 1
Total 8
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V. CATALOGUE OF ORTHOGONAL MAIN-EFFECT PLANS

A. Consiruction of Basic Plans

The task of presenting a catalogue which gives every possible
orthogonal main-effect plan with Bl trials or fewer is enormous and need
nnt he undertzken. Each of these plans can be easily deduced from one
of twenry-six "basic plans', by choosing a suitable sei of columns.

Consider the orthogsnal main-effect plan for the 34 experiment in
nine trials. It was demoastrated in Chapter IV that .rom this plan one
can obtain plans for the following experiments: ‘_";3 x 2, 33 x Zz, 3x 23
and 24 . If a plan which consisted of the plans for both the 34 experi-
ment and the 24 experiment in nine trials is given, then the plans for
any one of the 34, 33 x 2, 32 x ZZ, 3x 23 or Z4 experiments can be
obtained by sclecting the appropriate nuinber of columns from the plar
ior the 34 and 24 experiments, regpectively. The plan whicn consists
of the plans for both the 34 experiment and the 24 experiment in nine
trials is called a basic plan.

t
Similarly a basic plan for the 4

t. t..
F4 3 . . .
x3 "x2 experiment in sixteen

5

1

trials is a plan consisting of the plans for the 45, 3" and 2!® experi-
ments. -

Each column of the basic plan represents a factor. The number of
levels of any factor can be determined by counting the number of
different symbols ¢, 1, 2, etc. which represent the levels. The columns
are numbered so that each column may be identified quickly. The

numbering of the columns may best be explained by an example. The

column numbers on the four-level factore of basic plan 5, which conzists
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5 .5 15 -

of the plans for the 47, 3° and 2 experiments in sixteen trials, ave:

2 3
* ¥

#*

5 .
*

-

The numbers on the three-level columns for this plan are also

* N

3 5.
* *

1 :
* *

The numbers on *he two-level factore range from 1 to i5 where for

tabular convenience inece numbers are written in the form

6 0 .,....1.
1 2 5

The footnote given below the basic plan indicates that the column
00 0

identified by i replaces the columns identified by 1 2 and ., the

column identified by 5 replaces the columns identified by g g and 2

and s> on. Hence, if a four-level factor identified by i is used in an

orthogonal main-effect plan then the three-level-factor identified by
column i and the three two-level factors identified by columns tl) g and

g cannot be used.

B. Use of the Catalt;gue

In this section we will illustrate the use of the catalogue with several
exampies.

a2t
The index of orthogonal main-effect plans given in section D of this
chapter indicates that a plan can be obtained for the 210 experiment in

twelve trials from basic plan 4. The basic plan has twelve treatrauent
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combinations and eleven factors. Choose any ien columns of this plan
and the required plan is obtained.
(i) _’:‘L_}_Zf:

The plan for the 3 x 23 experiment in eight trials can be determined
from basic plan 2. The footnote to this plan indicares that if the three-
level factor is ¢nosen then the two-level factors nurnbered 1, 2 and 3
cannot be chesen. Thus the plan 15 obtained by choosing the column
representing the three-level factor and any three of the four cslumns
4, 5, 6 and 7.

A plan for the 3 x 23 experiment in nine tirials is given by basic

plan 3. The plan can be obtained by choosing column 1 from the three-
level factors and columns 2, 3 and 4 from the two-level factors., It is
clear that a plan for the 3 x ?.3 experiment can be obtained from basic
plan 3 by choosing any one of the four columns fur three-level factors
and three columr.s from the twe-level factors, no colurnn of the two-level
factor having the same column number as the column number of the chosen

ti-ee~level factur.

{iz1) 4% x3x 25:

The index indicates that an orthogonal main-effect plan for the
5 . i s ) .
42 x 2 x 27 experiment can be constructed in sixteen trials from basic

2
* from

the four-level zolumns, 3 from the three-level columns and 3, i R ;,

; and ; from the two-level columns. The use of the four-level

plan 5. The plan may consist of the columns numbered and

%*

1 _
columns and eliminates the use of the three-level columns

* *




and alsc ti2 two-level columns identified by

#* oY

identified by , and

U ( - ..
(,) - 9 0 9 and 9 . The use of the three-level column i eliminates
i L D 4 2 o
. i 00 0
the use of the two-lavel columns 7 8 and 9 -

"

v) 8 x4’ x2:

A plan for the 83 x 47 x Zi0 experiment in sixty-four trials may be

deduced from basic plan 25. If the three eight-level factors chosen are
the columns identified by ,1 'Jf and ; then the four-level factors

identified by the seven columns nunbered

3 s O
#* O
“+ W o
% O
O
#* OO
#* O

and the two-level factors identified by the columns numbered from 1 to

? cannot be used. We then can choose the seven four-level factors to be

the columns numbered

#xO
o
Q
3 b e

Thus the ten two-level factors must be chosen from the coluiuns

6

4
numbered 3 to 3

C. Tables of Orthogonal Polynomials

The orthogonal contrasts which define effects and interactions can be
readily determined from a table of orthogonal polynomials., The ad-
vantage of using orthogonal contrasts to define effects und interactions
arises from the fact that orthogonal polynomials are so constructed that

any term of the polynomial is independent of any other term. This
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property of independence permits one to compute each regression
coefficient independently of the others and also facilitates testing the
significance of each coefficicnt.

Tables of Orthogonal Polynomials for the case of equally spaced
levels are readily available, e.g. Fisher and Yates (1938), Anderson
and Houseman {1942}, It would be an impossible task to compute the
orthogonal polynomials for urequally spaced levels. However a sunple
procedure for computing these orthogonal polynomials is available and
will be presented below. If equally spaced levels do not each occur ina
plan an equal number of times the published tables of orthogonal
polyromials are not appropriate. The orthogonal polynomials for equally
spaced levels which do not occur in a plan with equal frequency must be
computed by the followiang method for unequally spaced levels.

For any set of crthogonal polynomials the linear contrast is of the
fcrm Zia + ﬁx)yx, where a and B are constants, x is the level at
which the factor occurs, Yy is the response to the treatment combination
with the factor at the x level and the summation is over every value of
x whicn is represented. The guadratic and cubic contrasts are of the
form Z{a +px + 'yxz )yx and Z(a + Px+ 'yxz + 6x° )yx » respectively.
The extension to higher order contrasts is obvious. Two contrasts are
« ‘thogonal if the coefficients of each contrast sum to zero and the sum of
producis of the corresponding cocfficients of the two contrasts is zero.

We will illustrate the procedure for obtaining orthogonal polynomials
for unequaliy spaced levels with an example.

Consider an independent variable x with levels 0, 1, 2 and 4.

Yot
=
-3




The coefficients of the linear, quadratic and cubic .~ontr: sts for this

example is displayed in Table 16.

TABLE 16

COEFFICIENTS OF ORTHOSGONAL CONTRASTE

Level of

x Linear Quadratic Cubic

¢ a a a.

1 a+p at+tB+y «tPpt+ty+ 6

2 a+ 2B a+ 2p + 4y a+ 2p + 4y + 88
4 a + 4P a+ 4p + 16y a+4p + 16y + 646

The coefficients of the linear contrasi must sum to zero. Thns,
40 +7p = O .

Seiting B = 1 we find that e = -7/4. In order that the coefficients of
the orthogonal contrasts be integers reduced to lowest terms we multiply
these coefficients by 4 to obtain f =4 and a = -7. Substituting

a= -7 and B = 4 in the linear contrast given in Table 16, gives the

linear coefficients.

Level of Coefficient of
X . lirear contrast
0 -7
1 -3

1

9




The coefficients of the guadratic contrast must sum to zero. Hence,

i
L&

7 40+ 7+ 21y = 0.

- The sum of products of the corresponding coefficients of the linear and

quadratic contrasis must also equal zero. Tiius,

0
- 358 + 145y = 0.
. Solving thesc two equations to obtain integral values for o, § and y we
obtain a =14, p=-29 a~d y= 17, )
f we substitute these values in the quadratic contrast and reduce the
T~ resulting coefficients to lowest terms the coefficients of the quadratic

“o contrast is given by

) Level of Coelficients of )
: X Quadratic contrast o
0 7 ;
1 -4
.- 2 -8
4 5

Siu.ilarly the sum of the coefficients of the cubic contrast and the sum of
products of the corresponding coefficients of the linear and cubic contrasts

and the quadratic and cubic contrasts must each egual zero. Hence,
q 9

.
4o+ 7P+ 21y + 736 = 0
358 + 145y + 5815 = 0
44y + 2526 = 0

Solving these equations to obtain integral values for a, B, ¥ and & we

A obtain a= -36, B =392, y=-315 and 6 =55, If we substitute these

109 -




values in the form of the coefficients of the cubic contrast given in T

Table 16 and reduce tne resulting coefficients to lowest terms, the

coefficients of the cubic contrast are given by

Level of Coefficients of

Cubic contrast

0 -3 e
1 8
2 -6 _
4 1

The orthogonal polynomials are presented in the following table.

TABLE 17

ORTHOGONAL POLYNOMIALS

Level of Linecar Quadratic Cubic
X
)] -7 7 -3

;.‘
1
w
'
kY
o)

r

The symbol B represents one unit of the linear effect of a factor
when set equal to unity. In order to obtain integral coefficients § was
set equal to 4 and hence %B represents one unit of the livear effect.
Consequently the linear contrast with coefficients given in Table 17

represents the estimate of 1 the linear effect of the factor. It is easily
P Y
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verified that the coefficients of the quadratic contrast are given by

29 2

" 7
(-—2—x+7x

where x=0, 1, 2 and %, respectively. Thus the symbol %—y
represents one unit of the quadratic effec., and the linear contrast with
coefficients given in Table 17 represents the estimate of % the quadratic
effect of the tactor. Similarly it may be demonstrated that the cubic
contrast with coefficients ¢’ ven in Table 17 represents the estimate of

12/55 the cubic effect of the factor.

This constant which is multiplying each efiect will be denoted by ;{

and in the tables of orthogonal polynomials the value of A and the sum of
squares of the coefficients denoted by Z, will both be given. Thus any
contrast defined by the coefficients given in the tables of orthogonal
polynomials represenis ‘% times the appropriate effect of the factor. It
was this convention by ;vhich the coefficients of the parameters for the
example in section H of Chapter IV were calculated.

In the tables of orthogonal polynomials the coefficients of a linear

contrast will be denoted by 01, the coefficients of a quadratic contrast

by @, and so on. The levels of a factor will be denoted by =x.
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D. Index of Orthogonal Main-Effect Plans

The index presented in this section indicates the basic plan from
which any orthogonal main-effect pian can be deduced with a minimum
number of trials. Unless the experimenter must use a plan with a
minimum number of trials there is usually a choice of basic plans from
which an orthogonal main-effect plan can be constructed. For example,
the basic plan from which the main-effect plan for the 34. 23 experiment
can be constructed in 16 trials is basic plan 5. However a plan for this
experiment can be constructed from basic plan 7 in 18 trials. The use
of one basic plan over another depends on which contrasts are deemed to
be most important. The orthogonal main-effect plan for the 34. 23
experiment in 16 trials estimates the two-level factor with an efficiency
of unity and estimates the linear effect of the three-level factors with
efficiency 3/4 and their quadratic effects with efficiency 9/8. The plan
with 18 trials estimates the effects of the three-level factors with an
efficiency of unity and the effect of each two-level factor with an efficiency
of 8/9. If the effecls of the three-level factors are the more important
then ths plan with 18 trials should ue chosen und if the effects of the two-
level factors are the rnore important then the plan with 16 'trials should
be chosen.

The notation used in the index requires some explanation. The plan

204n, n,
3 - Zr; = 5 in 54 trials indicates that orthogonal main-effect

plans can be constructed in 54 trials, from basic plan 22, for the

following experiments:

12¢




20, 32124 322 ;3 323 52,24, g 325

The notation is used to reduce the number oi entries necessary to list all

the possible plans. The plan 47.3%. 22930 12 0.1,2 in 32 trials
indicates that the plans for the 4'.210, 47.3.27 ana 47. 3% 2%

experiments can be construcied in 32 trials. The plan

654 *3*=.27, =t, =8, 2.“:':i = 8-4n1 represents the following

experiments:

t. t n, n t, t, n., n,
6152323, Tt.=8, In,=8;6 '5%4.3 227, Tt;=8, Sn,=1;
6 52. 2

’ Eti=8.




Number of Basic Page
trials plan
1 139
2 139
4 140
5 141
8 142
9 143
12 146
13 147
15 149
16 150
17 181
18 152
21 155
23 157
24 158
25 159
2 139
5 141
13 147
25 159
3 140
5 141

122

]




Number of Basic Page
plan

11 145
13 147
25 159
3 140
5 141
i1 145
13 147
25 159
3 140
5 141
i1 145
13 147
22 156
25 159
5 141
7 i42
11 145
13 147
22 156
25 159

W




Number of
trials

18
27
32
54

64

18
27
32
54
64

27
32

54
64

27

54

64

27
54
64




Number of
trials

a7
54

64

27
54
64
81

27
54
64

81

54
64

81

54

64

81




[x%
~

[C%

3%}
v

™~

81

Number of Basic Page
trials nlan
54 22 156
64 25 159
81 26 162
54 22 156
64 25 159
e1 26 162
54 22 156




Plan Number of Basic Page
trials plan
42322932 L _51,...,3 16 5 141
n n
423122 zn -4 25 10 144
42,38 225730 L _0,1,...,7 32 13 147
2, L c
423122 wp-g 50 20 154
2 Dy E’»n2
423 %2 %, za =19 64 25 159
n n
423 %22, zn=32 81 26 162
433228738 01,2 16 5 141
3 By n,
43127, 203 25 10 “ia
43.3%2%%°30 01,000 32 13 147
. ii n
83122, 5n =8 50 20 154
3 B4 3n2 ) . L
47.3 .2 R Eni=18 64 25 i59
3 ,% %2
433122 sn-28 81 26 162
4% 3n 2330 o0 16 5 141
n n
4t 312 Zn=2 25 10 144
4t.32 21930 0,1,...,5 32 13 147

127
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Plan Number of Basic Page
trials plan
. n n
4% 3172 Zn =7 50 20 154
4 By 3n
a3 '2 %, ma=17 b4 25 159
n n
43122 zn-24 81 26 162
4%, 16 5 141
n n
4®.3 122 Zn=1 25 16 144
.
4 3021630 o g, 32 13 147
n n
43122, gn=6 50 20 154
~ ill an
£.3%2 %, mn=16 64 25 159
Ta n
2.3 12 Zn =20 31 26 162
45, 25 10 144
48,30 p13-3n 61,3 32 13 147
n n
%3122 5a=s 50 20 154
n, 3n
31272 5015 64 25 159
1t n
3022, zas1g 81 26 162
47 30210-3n 612 32 13 147
- n N~
43122 zn=4 50 20 154
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Plan Number of Basic Page
trials plan
n 3n
4T3 1,2 Zn = 14 64 25 159
48.3m 730 6,1 32 13 147
n n
83127, Zn=3 50 20 154
] n nz
%31 2% zn=15 64 25 159
4?2t 32 13 147
n n
3l 2 o =2 50 20 154
n 3n
47,3122 sn=12 64 25 159
n n
41031 52 5o 50 20 154
n 3n
4103172 o011 64 25 159
a1 50 20 154
11+n1 nz 3n3
4 322 3, zn=10 64 25 159
5. 28 16 6 141
By B2
5.3 1.2 %, 2n,=9 27 11 145
n. port n
5.4 .3223, 5n =5 25 10 144

129




Plan

Namber of Basic Page

trials plan
n, n, 24-3(n1+n2) )
5.4 1.3 2.2 . Tn.=0,1,...,6 32 14 148
5.4 1 32 2n3, Zn, =10 50 20 154
5.4 132 256-3(n1+n2), Zn.=0,1,...,16 64 25 159
5.4 13223, £n, =36-4n 81 26 162
52413523, o, = 4 25 10 144
52,471 372,73 5. o6 49 19 153
52415253, Za. =9 50 20 154
524132 249*3(111”2) » En,20,1,...,15 64 25 159
52413223, Zn,=32-4n; 81 26 162
534137253 5,23 25 10 144
53413223 5,25 29 19 153
53413223 5.-8 50 20 154
53,471,372 ;"3 . Zn,=14 64 25 159
53,4 %3223, £n, =28 -4n, 81 26 162
5447137223 gn -2 25 10 144
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Pian Number of Basic Page

trials plan

st4 13253, £n =4 49 19 153
544132 53, Zn =17 50 20 154
4 By B 35-5(n1+n2)

stal 322 , Bn.=0,1,...,9 64 25 159
58413253, T, = 24-4u, 81 26 162
5.4 13223, Zn =1 25 10 144
55413253, Zn=3 49 19 153
55413253 Zn.=6 50 20 154
554132 228-3(n1+n2), £n.20,1,...,8 64 25 159
854132 ,3, Zn = 20-4n 81 26 162
50, 25 10 144
56413223, Zn=2 49 19 153
56413223 gnes 50 20 154
564132 5?13, En=1 64 25 159
541352, 3, Tn = 16-4n, 81 26 162

.27, Zn =1 49 19 153

131
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Plan Number of Basic Page
trials plan
~7 nl n “n
574132 ;3 Zn, =4 50 20 154
7 By D, 14—3(n1+n2)
57,4 L3 2.2 , Sn,=0,1,2 64 25 159
n n n
574132 ,3, Sn = 12-4n, 81 26 162
8
5 49 19 153
8 n n n
5.4132.23,Eni=3 56 20 154
g By Ny 7-3(n1+n2)
58,4 1.3 2, , £n.-0,1 64 25 159
g 0, mpy m
5.4 13223, Zn =8-4n, 81 26 162
) n n n
57413223 sp=2 50 20 154
9 nl nz n
5.4 132,33 Sn, =4-4n 8i 26 162
10 "1 P2 M3
510 41 3223 5n =1 50 20 154
11
si1 50 20 154
3
6.2 16 6 141
n n
, B P2
6.3 .22, =029 27 11 145
n. n, 24-3{u.,+n,)}
1.0z 10,
6.4 .3 .2 , Eni=0,l,...,6 32 14 148

132




Pian Number of Basic Page

trials plan
n It n
6.4 1.3 2.2 3, T T 49 19 152
n, n, 56—3(n1+n&)
6.4 1.3 2.2 , =n.=0,1,...,16 64 25 159
n n n
6.4 1.3 2,23, Tn, = 36-4a, 81 26 162
n n n
6.5.4 1.3 2.2 3, Zn =6 49 19 153
n, n, 49—3(n1+n2)
6.5.4 ".3 “.2 » Zn,=0,1,...,15 64 25 159
n e} n
6.5.4 1.3 2.2 3, S, = 32-4n 81 26 162
L., n n n n
6‘.52.43.34.45,zni=a 49 19 153
t t n n 3n
61584132273 5¢=3, 2n-14 64 25 123
t i n n n
61524132273, Tt,=3, Tn, =28-4n, 81 26 162
t, t, n, n, 35-3(n +n.)
61524132 1772
St.=4, Tn,=0,1,...,9 64 25 159
t t n n n
6152413223, Dtz 4, Tn=24-4n 81 26 162
t, t, n, n_, 28-3(n.+n.)
6ls52 3132, 172
Zt.=5, En,=0,1,...,8 b4 25 159
t. t. n n n
6152413227, 5t=5 2n=20-4n, 81 26 162
t t n n 3n
615241322 3, sz, Tn =7 64 25 159




Plan Number of Basic Page

trials plan

4 t n n n

615241 32,3, Tt =6, Tn =16-4n, 81 26 162

t, t, n, n, 14-3(n,+n,)

61524132 1z

Tt.=7, £n,20,1,2 64 25 159

t t n n n

6152413223, Tt.=7, Bn = 12-4n, 81 26 162

t. t, n, n, 7-3{n.4 )

65241322 1 % st-s m0=0,1 64 25 159

t t. n n o

6152413227 st=¢, £n=8-4n 81 26 162

tl tz

61.5%, 2t=9 64 25 159

t. tz n1 n2 n3

6'.5%4 .3 “2"7, Zy =Y, El:x.l=4-4n1 81 26 162

t. tZ

6°.5°, Bt =10 81 6 162

7.28 16. 6 141
nl n.,

7.2 2%, zn=9 27 11 145
n; n, 24-3(n1+n2)

7.4 .3 .2 s Eni=0,1,...,6 32 14 148
n n n

74 1.322°, 50 =17 49 19 153
n, n, 56-3(n.+n.)

7.4 1.3 22 1 Z,zni=c-,1,...,1e 64 25 153
n n n

7.4 L3223, Tn = 36-4n, 81 26 162
n n n n n

761.5243.34.25,2ni=7 49 19 153

134




Flan Number of Basic Page
trials plan

¢t t, n, n, 49-3(n;tn,)
7615241322 L
Zt=1, 2ny=0,1,...,15 64 25 159
t:l tz ny n, n,
2.6 L5443 °.27, Eti=1, Zn,= 32-4n, 81 26 162
n n n n n n
2
716253 4%4352°%, =n=8 49 15 153
t t t n n 3n
71625341322 °, 5t=3 Inz=14 64 25 159
t t t n n n
£ :1 6253 41,3222, 5t,=3, 5n;=28-4n; 81 2% 162
¢, t, t, n; mn 35-3{n,+n,)
125241322 N
st=4, Zag=0,1,eees? 64 25 159
t t t n n n
716253413223, 5t.=4, Zn;=24-4n 81 26 162
—:t1 Atz 5t3 4n1 312 ?28-—»3(n1+n2)
ot = 5, Zni=0,1,...,8 64 25 159
t t t n n n
216253413223, 5,25 =n=20-4n; 81 26 162
t t t n n 3n
' 71 g2 53 41322 3, 5e=6, 2027 64 25 159
i t t n n n
214253413223, 5t=6, Bn;=16-4n; 81 26 162
t. t. t, n, n, 14-3(n;4n )
21625341322 1oz
Zt=17, Sn;=0,1,2 64 25 159
t t t n n n
21253413223, 5t,=17, Tn;=12-4n; 81 26 162

135




Plan Number of Basic Page
trials plan
t. t, t, n. n, 7-3{n,+n,)
7625348032, 178,
%, =8, E‘.:.xzo,l 64 25 159
t t. n n n.
716%5%413%2°, 5,28, 2n,=8-4n, 8! 26 162
o} n n
746253, 2n,=9 64 25 159
t t, t n n n.,
7162534 13%27%, 5t=9, Bn,=4-4n; 81 26 162
n n n
716253, =n=10 81 26 162
8
8.2 16 6 141
n n
8.3 1.2 2, 22n.1=9 27 11 145
n, n, 24-3(n +n,)
g.4 1.3 22 172, 2n=0,1,...,6 32 14 148
n, n, 56-3(n, 'n,)
8.4 1.3 2.2 , Zn,=0,1,...,16 64 25 159
n n n
8.4 1.3 2.2 %, £n =36-4n, 81 26 162
t, t, t, n, n, 49-3(n +:,)
8.71.6%.5°.4 1.3 2.2 1t
64 25 159

=t.-1, £n.=0,1,...,15
1 13




,- Plan Number of Basic Page
trials plan
t t t t n n n
= g8l7%2635%41 32,3,
Tt =3, Ta = 28-4n 81 26 162
s |
t, t, t, t, n, n, 35-3(n.+n,) :
- 812242544132, 2 f
R =tz 4, Bn,=0,1,...,9 64 25 159 |
t t t t n n b
8 l7263 5441 32,3,
Zi =4, Zn =24-4n, 81 26 162 N
e t, t, t, t n n, 28-3(n,+n}
gl.726°5%4 3 %2 v
Tt;=5, En,=0,1,...,8 64 25 159 !
t t t t n n n
8l.7%63.5% 413223,
=+, =5, In, =20-4n; 81 26 162
t t t t D n, 3n
8l 7263544122, 3, Zt;=6, Tn,=7 64 25 159
t t t 1 n n n
gl72635%4132,3,
Zt;=6, Sn;= 16-4n; 81 26 162
t. t, t, t, n, n, 14-3(n ,4n,) — !
§1.72 63544132, U2t
Tt,=7, Za;=0,1,2 64 25 159
t. ot ot t n n, n.
Blile3 5% 413223,
St,=7, Zn,=12-4n; 81 26 162
137




{_ Plan Number of Banic Page
) trials plan -
t. t, t, t, n, n, 7-3[n +n))
8l72263544 132 R
) t,=8, Tn,;=0,1 64 25 159
t t t, t n n n.,
’ gl72635%4 13223,
Tt =8, Zn,=8-4n, 81 26 162 )
n n n n
- - 8 1.7%6%5%, 5n=9 64 25 159
€ t t t n. n, n -
gl7%635%4 13223,
. $t,=9, Sn,=4-4n, 81 26 162
- n n., n n
8 1L7%6°%5%, zn=10 81 26 162
nl I‘AZ
9.3 .2 %, Zn;=9 27 11 145
n n n, n, n n n, n,
9182736 %554037 2% sn=10 81 26 162
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F. DBasic Orthogonal Main-Effect Plans

BASIC PLAN 1: 2°; 4 trials

|
|
BASIC PLAN 2: 4; 3; 2 ; 8 trials

123 )
coo
011 - e
101
110
* * 1234567
0 ©0 0000000
¢ 0 02001111 -
1 1 0110011
1 1 0111100
2 2 1c10101
2 2 1011010
s 3 1 1100110 .
3 1 1101001
#=149243
139




e 1234

0000
. 0112
R 0221
‘ 1011
1120
1202
- 2022
2101
2210

anann

- e

T 06000
11011

01101

10110

' 01011

g 001n1
00010

10001

11000

11100

01110

10111

BASIC PLAN 4: 2’

BASIC PLAN 3: 3%; 2%, 9 trials

1234

0000
0il0
0001
1011
1100
1000
0000
0101
0Clo

1

nnontl

678901

00000
100010
110001
111000
011100
101110
110111
011011
10i101
010110
001011
000101

; 12 trials



BASIC PLAN 5: 4°; 3°; 215, 16 trials .

) 12345 12345 00000 0NCO1 11111
HEARY  REREE 12345 67890 12345

00000 00000 Q0000 00000 20000 *
01123 01121 00001 10111 C¢1130 "
02231 02211 00010 11011 10011

' 03312 01112 00011 ©11C0 11101

’ 10111 10111 QL1100 00110 11011

11032 11012 0:101 10001 10101 .-

12320 12120 01110 11101 01000

13203 11201 01111 0101¢ 001JO

202¢2 20222 10100 C1011 01161

21301 21101 10101 11100 00011

22013 22011 10110 10000 11110

23130 21110 10111 00111 10000

30333 10111 11000 ©1101 10110

31210 11210 11061 11010 11000

32102 12162 11010 101132 Q0101

33021 11021 1i0ii ©0001 01011

1-000 2-000 3-000 4-111 5-111
#-123 #-456 #=789 #-0]12 #=345

B..SIC PLAN 6: 8:7;6; 5; 25, 16 triala

11 1 23456789 ot

'™

00000000

11111111

00001111

11110000

00110011

11001100

00111109 <
11000011 '
01010101

10101010

01011010 =
10100101

01100110

10011001

01101001

10010110

NLO O VE WO NNNR OO
WWOROOUMULESVYWNNWOO
WWNNUVULSE R WLW NN =O0O
WWRONEHPLEWLNNE ~OO
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BASIC PLAN T:

1234567

0000000
0112111
0221222
1011120
1120201
izo2012
2022102
2101210
2210021
0021011
0100122
1212200
1002221
1111002
122C110
2010212
2122020
2201101

BASIC PLAN 8:

002900 00001
12345 67890

00n00 00000
11001 11101
01100 12110
10110 01111
11011 00111
01101 10011
00110 11001
00011 01100
00001 10110
10000 11011
¢1000 01101
10100 00110
u103:0 00011
10101 00921
11010 10040
11101 Gl0CO
11110 10102
01111 C30i¢
00111 10101
10011 1i01¢

N

J;Z

1234567

000GGo0
0110111
0001060
1011100
1100001
1002210
c000300
0101019
00106001
0001011
019010¢C
0010000
1006001
1111000
1000110
0016010
9100009
0001101

519

2" 75 20 trials

11111
12345

05000
21000
10100
01010
10101
11010
11101
11110
01111
00111
10011
11001
1100
10110
110541
01101
00110
G011
00001
19060

142

111
6785

0000
0110
0011
0001
0000
1000
0100
1010
0101
1010
1icl
1110
1111
0111
0011
1037,
11130
Gl10
1011
1101




BASIC PLAN 9: 223, 24 trials

00009
12345

00000
1111
o111
00111
00011
00001
10000
010060
10100
01010
00101
10010
11001
01300
00110
10011
11002
21100
10110
01011
10101
11010
11101
11110

0002
67890

00000
01011
=0101
11C10
11101
11110
11111
01111
90111
00011
00001
10000
01000
10100
01010
00101
10010
11001
01100
00110
10011
11001
01100
10110

11111
12345

00000
00110
10011
11001
01100
10115
01011
i6i01
11010
11101
11110
11111
01111
00111
00011
00001

100060

-V

01000
10106
cl010
00101
10010
11001
01100

143

11112
67890

000C0
01010
66101
15G1¢0
11001
01100
Q56110
1001 ¢
11001
01100
101190
01011
10101
11010
11101
11110
11111
C1111
00111
00011
00001
10000
01000
10100

222
1213

J0¢C
000
Hly
10C
010
101
012
o1
100
110
011
001
100
110
011
101
2190
101
110
111
111
111
011
01




6

6 .6

BASIC PLAN 10: 5 74 ;37; 2

123456

000020
011234
022413
033142
0461321
101111
112240
123024
1364203
140432
202222
213401
225130
230314
241043
303333
314012
320241
331420
342104
Lubhat
410123
421302
432031
443210

123456

000000
011230
022013
033102
400321
101111
112300
123020
130203
100032
202222
213001
220130
230310
201003
303333
310012
320201
331020
302100
000000
010123
021302
032031
003210

123456

000000
011220
022012
022102
000221
igiinl
112200
122020
120202
100022
202222
212001
220120
220210
201002
202222
210012
220201
221020
202100
000000
010122
021202
022021
002210

144

6; 25 trials

1234586

00000
011110
011011
911101
000111
101111
111180
111010
110101
stoc11
101111
111061
110110
110110
1010901
101111
110611
110101
111010
101100
000000
010111
011101
011011
001110




BASIC PLAN 11: 9; 8;7; 6; 5; 4; 315; 213 27 trials

00000 0600C1 111 00007 0DGOGY 111
12345 67890 123 12345 67890 123

*
™
*
*
*
*

00000 000C0 00O 00000 00000 000
60001 12121 212 00001 10101 010
00002 21212 121 00000 01010 101
01120 00111 122 (1100 00iil iGC
011231 12202 001 01101 10000 001
01122 21020 210 01100 01000 010
¢2210 00222 211 (©0010 00000 011
02211 12019 120 00011 10010 100
62212 21101 0C» 00010 C1101 000
10110 11001 121 10110 11001 111
10111 20122 620 10111 00100 000
10112 ©2210 202 10110 00010 00C
11200 11112 200 11000 11110 000
11201 20200 il12 11001 00000 110
11202 02021 021 11000 00001 001
12020 11220 022 10000 11000 OC.
12021 20011 201 10001 G001l 001
12022 02102 110 1000C 00100 110
20220 22002 222 00000 00000 GO0
20221 01120 101 00001 Q1100 101
20222 10211 10 0C0C0D0 10011 010
21010 22110 011 01010 00110 011
21011 01201 220 01011 01001 0QC
21012 10022 102 01010 10000 100
22100 22221 100 00100 00001 100
22101 01012 012 00101 01010 010
22102 10100 221 00100 10100 001

“~ 000

WOBDYNJOPNO VLIV S PP WWWUNNONRI OO0
COONNNNOPCVUBELPWWUNNNE OO0 QO
QOO PIP P ITUONPLLULVDWWNNNHE OO0
COOVVMWUVWUVU MEHPLLLPVLBLBNNNRMIHIOOO
QOO PF P LI UVULLVLUWWIKERMNNNMEMOOO

OCODONNNNPNDN WWWWLW W M R e NN N e

®=19293494
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BASIC PLAN 1¢: 2

66000

12345

00000
10111
11013
0i111
00020
00011
00001
11100
11100
11100
10001
10111
11001
01110
10110
11011
01101
00110
00101

S AANN
FRVAIVI Av)

1010
00100
10010
01001
11010
01111
01000
10101

00001

67890

00000
10000
10000
10001
11110
G111l
11110
21010
01101
00110
00101
01010
11100
10110
11101
00111
11011
01000
00011
118C1
006100
10101
00011}
01000
11011
01101
10011
10110

11111 00010

146




123456789
A

000000000
011231111
022312222
0331233323
101111032
110320123
123203210
132032301
cGze231G2
2130612013
220131320
231300231
303232130
312103021
321020312
335211203
002130213
013301302
020222031
031013120
103021221
112210330
121333003
130102112
200313311
211122200
2220013133
233230022
301202323
310033232
323110101
332321010

BASIC PL

123456789
RERRELRES

060000060
C11211111
022112222
c11121111
101111012
110129121
121201210
112012101
202221102
211012011
220111120
211100211
101112110
11216i021
121020112
110211201
002110211
011101102
020222011
011011120
101021221
1122101310
12111001
117102112
200113111
2111222350
222001111
211210022
101202121
1100311212
121110101
112121010

AT

AN 13

90000
12345

000C0
00001
00010
00011

1100
01101
01110
“4111

1C100

10101
10110
10111
11000
11001
11010
11011
o002y
00001
06010
00011
c1100
01101
01110
01111
10160
10101
10110
1011l
11000
11001
11010
11011

~000 2-000 3-000 4-111

*=123

*ea56

#-789 #-012

00001
67890

00000
10111
11011
01100
00110
10001
11101
01010

1c1l
11100
133600
30111
G1101
1i010
10110
00001
01010
11101
10001
00110
01100
11011
10111
00000
00062
10110
11010
01101
00111
10000
11100
01011

5-111
%345

147

49; 39; 231

11111
12345

00Cu2
vlllo
10011
11101
11011
10101
01000
0G11c
01101
00011
11110
1C000
10110
11060
00101
01011
111i0
10000
011€C1
00011
00101
01011
10110
11000
16C31
11101
0000¢C
G111¢C
0100C
00110
11011
1101

6-111
*-678

11112
67890

00000
01101
10110
11011
€11c0
00001
11010
10111

11001

16100
01111
Gov1o
10101
11000
00011
01110
00010
01111
10100
11001
011190
00011
11000
10101
11C11
10110
011901
00000
10111
11010
00001
01100

3 32 trials

22222
12245

00000
10110
11011
01101

Ny~
wviivi

11011
10110
Q0006
10001
00111
0101¢
11100
11100
0101¢C
00111

10001
4

ww'w a

10111
00001
01100
11010
1101¢C
n1ino
60001
10111
0Clic
10000
11121
U101
01011
11101
10000
00110

7-122 8-222

%-901

*-234

2233
8901

0000
0000
0000
0000
0C11
0011
0011
0011
0101
0101
0101
0101
0110
0119
0110
0110
1111
11i1
L1l

1111
1100
1100
1100
1100
16190
1019
1010
1010
1001
10€C1
1001
1001

9-222
*-567




6 2

BASIC PLAN 14: 8; 7; 6; 5; 4°; 3%, 2%%. 32 trials

0 0 234567 234567 00000 00011 11111 111 222222
1 1 Resadn EeRnEx 23456 78901 23456 739 012345

~ O
- O

000000 000000 0060CC 00000 00000 000 000000
010123 010121 00091 10000 11101 110 O001iii
001212 001212 00000 00111 0101} 101 011110
011331 011111 00001 10111 10110 011 010001
102011 102011 01100 01010 0001} 0}: 110101
112132 112112 01101 11010 113110 101 21010
103203 101201 01100 01101 01000 110 101011
112320 111120 ©1101 11101 10101 000 100100
220022 220022 10110 10000 00101 1U:F 111100
230101 210101 10111 00000 11000 011 110011
221230 221210 10110 10111 01110 000 100010
231213 2311111 10111 C€O111 10011 110 101101
322033 122011 114i0 11010 00110 110 001001
332110 112110 11011 01018 11011 00U 000110
323221 121221 11010 11101 01101 011 0O1¢111
333302 111102 11011 01101 10000 101 011000
121101 121101 01110 10110 11000 011 001100
131022 111022 01111 00110 00101 101 000011
120313 120111 01110 10001 10011 110 ©€10010
130230 110210 01111 00001 01110 Q00 0731101
023110 021110 00010 11100 11011 000 111001
033023 011011 00011 01100 00110 110 310110
022302 022102 00010 11011 10000 101 100111
Gs2221 012221 00011 0:011 01101 011 101000
301123 101121 11000 00110 11101 110 110000
311000 111000 11001 10110 00000 0CO 111111
300331 100111 11000 00001 10110 011 101110
310212 110212 11001 10001 01011 101 100001
203132 201112 10100 0112C 11110 101 €00101
213011 211011 10101 11100 00011 011 001010
202320 252120 10100 01011 10101 000 Si11011
212203 212201 10101 11011 01000 110 010100

NP PN VNP ROV DONWOEWNWNOMMN WO
VP OWPLPMWURNOEEVRWR L OMNW O N WN O hy W D
WMEaENWELEVWUNWNSEVNWLUURPRONWOMWNWNCOMKNWEIRD
HMENWELEFHULUNWNESEFRNWF P ONWOWNBANCKIOWMO

2~000 3-000 4-001 S5=111 6é-iii 7-111
#=234 #=567 #=890 #=]123 H=qgS56 =789
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00000
12345

00000
01011
00101
10010
01001
00100
10014
11001
61100
10110
01011
10101
01012
00103
00010
00001
10000
01000
00100
19010
11001
11100
01110
10111
1on
11101
11110
1i111
o1111
00111
00011
10001
11000
11100
J0111¢
10111

BASIC PLAN 15: 2

C00G1
67899

00060
10001
11000
11100
01110
10211
01011
00101
10010
01001
¢0100
10010
11001
01100
10110
21031
10101
01810
00101
00010
00001
10000
V1000
00100
10010
11001
11100
01110
10111
11011
11101
11110
11111
01111
00111
00011

11111
12345

00000
11110
11111
01111
00111
00011
" 0001
11000
11100
01110
10111
01011

0C1iG1
10010
21001
00100
10010
11001
01100
10110
01011
10101
01010
00101
00010
00001
10000
01000
00100
100190
11001
11100
01110
10111
11011
11101

13132
67890

00000
11100
01110
10111
11011
11101
11110
11:m

G111
00111

el X Y

00011
10001
il000
11100
01110
10111
01011
00101
10010
01001
00100
10010
11001
01190
10110
0id11
10101
01010
00101
00010
00001
10030
01000
00100
10010
11001

149

35

22222
12345

00000
10000
01000
00100
10010
11001
11100
01110
10111

19N
~n e

11101
ii1ic
11111
o1111
go112
00011
10001
12000
11100
01110
101
01011
00101
10010
01001
00100
10010
11001
01100
10110
01011
10101
01010
00101
00010
90001

; 36 trials

22223
67890

00000
10101
01010
00101
00010
00001
10000
01000
00100
10010
11001
11100
01110
10111
11811
11101
11110
11111
01111
00111
00011
10001
11000
11100
01110
10111
01011
00101
10010
01001
00100
10010
11001
01100
10110
01011

33333
12345

00000
10010
11001
01100
12110
01011
10101
0lcio
00101
00010
00001
10000
01000
00100
16010
11001
11100
01119
10111
11011
11101
111190
1111
01111
00111
00011
10001
11000
11100
01110
10111
oio11
00101
10010
01001
00100




00000
12345

00000
11001
01100
10110
11011
01101
00110
00011
00001
10000
1000
10100
01010
10101
110190
11101
11110
01111
00111
10011
00000
11001
V1100
10110
11011
01101
001190
00011
00001
10000
01000
10100
01010
10101
11010
11101
11110
01111
00111
10011

BASIC PLAN 16: 2

00001
67850

00000
11101
11110
01111
00111
10011
11001
01100
10110
11013
01101
00110
00011
00001
10000
01000
10100
0110
10101
11010
00000
11101
111190
0.111
00111
10011
11001
01100
10110
11011
01101
00110
00011
00001
100090
01000
10100
01G10
10101
11010

1111
12245

00000
01000
10100
01010
10101
11010
11101
11710
01111
00111
10011
110901
01100
10110
11011
01101
00110
00011
00001
10000
00000
01000
10100
01010
10101
11010

131idl

11110
01111
00111
10011
11001
01100
10110
1111
01101
00110
00011
00601
10000

11112
67890

00000
01100
u011l0
00010
0000
100C0
01000
10100
01010
10100
11010
11100
11110
01110
00110
10010
11000
01100
10110
11010
00001
01101
U0iil
00011
00001
10001

ny=n
VAUV}

10101
0lo011
10101
11011
11101
1111
01111
00111
10011
11001
01101
10111
11012

39

22222
12345

00000
13001
01100
10110
11011
01101
00110
00011
00001
10000
01920
10106
01010
10101
11010
11101
11110
01i11
00111
10011
11111
00110

LW L 1

i00i1
01001
00100
10010
11001
11100
11110
01111
10111
01011
10101
01010
00101
00010
00001
10000
11000
01100

150

22223
67890

00000
11101
11110
01111
00111
10011
11001
01100
10110
11011
01101
00110
00011
Uuoll
10000
01000
10100
01010
10101
11010
11111
00010
00001
10000
11000
01100
Co110
10011
01001
03100
loc10
11001
11100
11110
o111
10111
01011
10101
01010
00101

, 40 trials

33333
12345

00000
01000
10100
01010
10101
11010
11101
11110
01111
0o111
10011
11001
01100
ielio
11011
oliol
00110
00011
00001
10000
11111
10111
1333 9
10121
01010
00101
00010
00001
10000
11000
01100
00110
10011
01001
0c100
10010
11001
11100
11110
01111

3333
6789

0000
0110
0011
0001
0000
1000
0100
1010
olc1
1010
1101
1110
1111
0111
Quil
1001
1100
0110
o1l
1101
1111
1001

~
3180

1110
1111
0111
1011
0101
1010
0101
oo1ig
0001
0000
1000
1100
0110
6011
1001
0100
0010




00000
12345

00000
11001
01100C
10110
11011
C1101
10110
01011
10101
11010
01101
00110
00011
10001
01000
00100
0001¢
05001
00000
10000
11000
11100
01110
10111
01011
00101
00610
10001
11000
11100
11110
11111
0111i
10111
11011
11101
01110
0Gill
10011
01001
10100
01610
0C101
10010

003501
67890

poooe
01001
10100
01C10
00101
10010
11001
01100
10110
11011
01101
10139
o112
10101
11010
01101
00110
00011
10001
01000
00100
00010
40001
00000
10000
11000
11100
01110
10111
01011
00101
00010
10001
11009
11100
11110
13in
01111
10111
11011
11101
031110
00111
10011

43

EASIC PLAN 17: 277 ; 44 trials

11111
12345

00009
11011
11101
01110
00111
10011
01001
10100
01010
00301
10010
11001
01100
10110
11011
01101
i0110
01011
10101
11010
01101
00110
000112
10001
01000
00100
00010
00001
00000
10000
11000
11100
01110
01011
00101
00010
10001
11000
11100
11110
1111
01111
10111

11112
678950

00000
11100
11110
11111
0111
10111
11011
11101
-1110
00111
10011
01001
10180
01010
00101
10010
11001
01100
10110
11011
01101
10110
01011
10103
11010
01101
00110
00011
10001
01000
001900
00010
00001
06000
10000
11000
11100
01110
10111
01011
00101
00010
10001
11000

22222 22223 33333
12345 67890 12345

00000 C0000 00000
01013 10000 01000
CU1C1 11000 00100
00010 11100 00010
10001 01110 00001
11000 10111 00000
11100 01011 10000
11110 00101 11000
11211 00010 11100
01111 10001 011190
10111 11000 101l
11011 11100 01011
113103 11112 20103
01110 11115 20010
006111 01111 1000}
10011 1011} 11000
01001 11011 11109
10100 11101 11110
01010 01110 11111
00101 00111 0111l
10010 10011 10111
11001 01001 11011
01100 10160 131101
10110 01010 01110
11011 020101 00111
01101 10010 10011
10110 11001 01001
01011 01100 10100
10101 10110 01010
11010 11011 00101
01101 01101 10010
00110 10110 11001
00011 01011 01100
10001 10101 10110
01000 11010 11011
00100 01101 01101
00010 GO110 12112
00001 00011 01011
00000 10001 10102
10000 01000 11010
11000 00100 01101
111466 00010 00110
01110 00001 00011
10111 00000 1000}

33334
67890

00000
11010
01101
00110
00011
10201
01000
00100
00010
00001
0000
10000
11000
11100
01110
10111
01011
00101
00010
10001
11000
11100
11110
11111
01111
10111
11011
11101
01110
00111
10011
01001
10100
01010
Go101
10010

11ant

advwwe

01100
10110
11011
01101
10110
01011
10101

&vhs
123

oao0
110
011
101
010
101
110
o1l
001
000
100
010
00l
000
000
e J4)
100
110
111
011
101
010
001
000
100
110
111
111
133!
011
101
110
111
011
001
100
010
101
010
001
100
110
on
10




00000
1234¢

00000
11111
01111
00111

AN

Ry

00001
10000
01000
00100
00010
00001
16000
11000
01100
10110
01011
10101
01010
£G101
00010
10001
11000
01100
10110
11011
61101
00110
16011
01001
00100
10010
11001
11100
01110
10111
01011
10101
01010
001901
10010
11001
11100
11110
01111
10111
11011
11101
11110

00001
47890

66050
J1111
10111
11011

11901
-l aWa

11110
111311
01111
00111
00011
00001
10000
010090
00100
ooo1lo
0063801
10000
1100¢C
01160
10110
01011
10101
01010
00101
00010
10001
11000
01100

- e

11111
12345

00000
001901
10010
11061
11100
11310
C1l11
10111
11011
11101
11110
11112
01112
00111
€011
00001
10000
01000
00100
00010
00001
10000
11000
01100
10110
01011
.0101
01010
00101
00010
10001
11000
01100
10110
11011
01101
00110
10011
01001
00100
10010
11001
11100
01110
10111
01011
10101
01010

11112
67890

00000
cli1lo
10111
10112
10101
01010
00101
10C10
11001
11100
11110
vllll
10111
11611
i1101
11130
11111
01111
00111
00011
G0001
10000
01000
00100
00010
CCCC1
10000
11000
01100
10110
01011
10i01
01010
00101
00010
10001
11000
0110G
10110
11011
01101
00116
10011
01001
00100
10010
11001
11100

22222
12345

00C00
01001
90100
1001¢
11001
11100
01110
10111
01011
10101
01010
00101
10010
11001
11160
11110
01111
10111
11011
11101
11110
11111
01111
001l
00011
00001
10000
01000
00100
00010
00001
10000
11000
01100
10110
01011
10101
01010
00101
000190
10001
11000
01100
1011cC
11011
0il01
00110
10011

22223
67890

30000
10110
11
1101
00110
10011
01001
00100
10010
11661
11100
01110
10111
01011
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